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 Gas bubbles in water act as oscillators with a natural frequency inversely proportional 
to their radius and a quality factor determined by thermal, radiation, and viscous losses. 
Newly-formed gas bubbles are excited into breathing mode oscillations immediately after 
creation, causing them to radiate a pulse of sound. Although the linear dynamics of spherical 
gas bubbles are well-understood, the mechanism driving the sound production has not been 
unambiguously identified. Using bubbles released from a nozzle as a model system, it can be 
shown that sound production is consistant with the rapid change in volume associated with 
the collapse of an air neck formed immediately after bubble pinch-off. The model is able to 
adequately describe the production of sound by bubbles released from a nozzle, and can also 
explain some of the acoustic properties of bubbles fragmenting in fluid turbulence. 
Laboratory experiments and model calculations of the mechanism are presented. [Work 
supported by ONR and NSF]. 
  

 
INTRODUCTION  

 The musical tones of running water are a familiar part of everyday life and are instantly 
recognizable. It has been known since the early part of the last century that these sounds are 
associated with the creation of bubbles, which behave like natural oscillators and produce a 
short pulse of sound at the moment of their formation1. Because of their importance to a wide 
range of subject areas, including medicine, chemical engineering, limnology, and 
oceanography, the behavior of spherical gas and cavitation bubbles has been well-studied2. 
The acoustic behavior of spherical gas bubbles is governed by the Rayleigh-Plesset equation, 
the validity of which has been verified by numerous theoretical and laboratory studies. 
 Despite the extensive body of literature on the acoustical properties of bubbles, little is 
known about the mechanism driving the production of sound when the bubble is first formed. 
Various mechanisms have been proposed3, including the increase in external pressure 



associated with a decrease in radius and accompanying Laplace pressure increase, hydrostatic 
pressure effects, non-linear, second order shape mode to volume mode coupling, and a fluid 
jet associated with the collapsing bubble neck. Estimates of the Laplace and hydrostatic 
pressure effects show that they probably make a minor (<10 %) contribution to the non-
equilibrium initial conditions that excite acoustic radiation3. Shape mode to volume mode 
coupling may play an important role in the damping of highly distorted bubbles released from 
a nozzle or fragmenting4, but a secondary role in bubble acoustic excitation. 
 Motivated by a desire to understand the underwater noise radiated by breaking waves, 
which is at least in part driven by the noise of bubbles fragmenting in fluid turbulence5, we 
have studied the acoustic excitation of bubbles released from a nozzle. Nozzle-released 
bubbles represent a simple model system for the study of the non-equilibrium initial 
conditions driving acoustic emission. 

  
1. BUBBLES RELEASED FROM A NOZZLE  

 Both small-scale laboratory and large-scale tank experiments were conducted to study 
the acoustic excitation mechanism of bubbles released from a nozzle. The small-scale 
laboratory measurements provided high-resolution photographs of the initial conditions 
immediately preceding bubble fragmentation while the tank measurements provided acoustic 
measurements relatively uncontaminated by reverberation. 
 For the laboratory measurements, a bubble-release nozzle was positioned 5cm above the 
base of a transparent acrylic tank with a 13 cm square cross-section. The tank was filled with 
either fresh or salt water to a depth of 25 cm. Air bubbles of approximately 2.2 mm radius 
were released at a nominal rate of 10 per minute. Bubble release was determined by 
interruption of a laser beam directed through the neck region, which was used to trigger 
photographic data acquisition and flash lighting. Flashes from two strobe lights, each of 15 μs 
duration, illuminated the bubble with a pre-programmed interval. Both images were 
superposed on a single frame, permitting observation of the neck development over short time 
intervals relative to the moment of neck rupture. The neck displacements were measured by 
increasing the inter-flash interval, with the first flash simultaneous with neck rupture. The 
neck velocity was measured using a short inter-flash interval with flash pairs occurring at 
successively later times after neck rupture. 
 The tank measurements were made on a frame deployed in a 15 m deep equipment test 
pool. A bubble injector consisting of a differential pressure regulator that provided a constant 
60 kPa pressure above ambient fed a bubble injection nozzle via a constant gas flow valve. 
Bubbles were injected at a rate of approximately 30 per minute and acoustic signals were 
recorded with an International Transducer Corporation 6050C hydrophone mounted 
approximately 25 cm from the injection nozzle. The bubble injection system was positioned 2 
m below the surface of the pool. 
 The geometry of a bubble immediately prior to release from the nozzle is illustrated in 
Figure 1. The bubble can be divided into three regions: a spherical region comprising the main 
volume of the bubble, a cylindrical region connecting the bubble to its parent volume (in this 
case, the air inside the nozzle) and a cone joining the cylindrical region to the spherical 
region. The cylindrical region is small compared with the overall bubble scale (0.3mm length 
versus 4.4 mm diameter) but the cone occupies a significant fraction of the overall bubble 
volume. 
 



  
Fig.1 The geometry of a bubble released from the laboratory experiment nozzle. The cylindrical region 

is very narrow immediately prior to fragmentation and cannot be readily seen in the photograph 
 
 Detachment of the bubble from its parent volume occurs in the middle of the hyperbolic 
region and is accompanied by a very small radius of curvature at the two ends of the ruptured 
neck. The small radius of curvature is associated with a large Laplace pressure jump across 
the neck boundary, which accelerates the neck end away from the detachment point. The 
retraction of the conical neck remnant into the bubble initiates a rapid decrease in the bubble 
volume and drives the bubble into breathing mode oscillation. 
 A simple model for the neck retraction can formulated as follows. The conical section of 
the bubble is divided into a series of stacked disks. We assume that each disk is driven into 
motion by the conversion of surface tension energy at the boundary of the disk into kinetic 
energy through the disk volume. Beginning this calculation at the detachment point and 
integrating along the main bubble axis to a distance x yields an expression for the neck 
velocity: 
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where 0x  and  respectively are the length and radius of the cylindrical region, 0r σ  is the 
water surface tension (taken to be 0.072 N/m), ρ  is the water density and 0.84η ≈  is the 



slope of the conical region. The time taken for the neck to collapse to a specified distance x is 
found by integrating the reciprocal velocity and is given by: 
 

 

1/2
0

0

1/21/2
3/2 3/20

0 0 02 1/2

,
4

2 ( ( )) ,
4 3 4 (1 )

r

0 0

x x x

r x r x x r x

ρ
σ

τ
ρ ρ η
σ η σ η

⎧ ⎛ ⎞ <⎪ ⎜ ⎟
⎝ ⎠⎪= ⎨

⎛ ⎞⎛ ⎞⎪ ⎡ ⎤+ + − −⎜ ⎟⎜ ⎟⎪ ⎣+⎝ ⎠ ⎝ ⎠⎩
x≥⎦

. (2) 

 
 The neck collapse velocity and collapse time as a function of distance along the main 
bubble axis are plotted in Figure 2. This figure also includes measurements of these quantities 
made by analyzing photographs of the collapsing neck. Given the very simple nature of the 
neck collapse model, the agreement between the calculations and observation is encouraging. 
The neck collapse velocity is in error at most by a factor of 2 and reproduces the overall tend 
in collapse velocity reasonable well. The time versus distance curve is in reasonable 
agreement with the data until approximately 0.8 mm from the detachment point. Because the 
neck collapse model does not include any dissipation or deceleration mechanisms, such as 
fluid viscosity, capillary wave generation, and coupling between the neck and the bubble, it 
tends underpredicts the time required for the neck to collaspe at later times.  
 The rapid retraction of the detached neck into the bubble drives the bubble into 
breathing mode oscillation. The magnitude of the oscillation can be calculated by computing 
the decrease in neck volume with time and associating it with an overall decrease in bubble 
radius. The decrease in bubble radius is associated with an increase in gas pressure within the 
bubble, which can be calculated assuming a polytropic relation between gas pressure and 
volume. To carry the calculation further, we assume that the bubble is spherical and its motion 
is governed by the linearized Rayleigh-Plesset equation. 
 Although there is no direct way to accommodate the effects of the retracting neck into 
the Rayleigh-Plesset equation, we can compute the forcing function required to drive the 
required decrease in bubble volume by invoking continuity of normal stress across the bubble 
wall and neglecting surface tension and viscous forces there. The final result is a driving term 
on the right hand side of the Rayleigh-Plesset equation: 
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where ε is the fractional increase in bubble radius, µ is the fluid viscosity, thμ  is an effective 
thermal viscosity6, k and ω respectively are the wave number and angular frequency of sound 
at the bubble’s natural frequency, R0 is the bubble equilibrium radius, is the internal, 
equilibrium gas pressure inside the bubble, and the forcing function is given by: 
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Fig.2 Comparison of the neck collapse model with experimental data. Circles and squares respectively 
correspond to fresh and salt water measurements. The cylinder radius (4.5 microns) was determined 
from the neck velocity at the end of the cylinder collapse and the cylinder length (100 microns) was 
estimated from the bubble photographs. The top plot shows the velocity of the collapsing neck as a 

function of distance from the detachment point. The bottom plot shows the collapse time as a function 
of distance from the detachment point 

 

 The effect of incorporating the forcing function described by Eq. (4) into the linearized 
Rayleigh-Plesset equation can be calculated by solving Eq. (3) using Runge-Kutta numerical 
integration. The result of this procedure is shown in Figure 3. The bottom plot shows the 
acoustic pressure measured at 1 m from the bubble center in the large tank experiment (solid 
black line) along with the pressure determined by numerical integration of Eq. (3) (broken 
black line). The dash-dot black line and gray lines are explained below. The top plot in Figure  



Fig.3 Top plot: Observed and modeled forcing functions plotted as a function of time. The solid, black 
line is the average of 50 forcing functions obtained from analysis of the acoustic pulse radiated by 

bubbles released from a nozzle. The four vertical, gray lines show the standard deviation in the 
estimate of the forcing function. The broken black line shows the theoretical forcing function based on 
the analytical model for neck collapse. The dash-dot black line shows the theoretical forcing function 

that includes an ad hoc modification for the effects of dissipation. Bottom plot: Observed and modeled 
pressure pulses. The solid black line shows the pressure pulse for a selected, average bubble. The solid 
grey, broken black and dash-dot lines respectively show calculated pulses for the observed, theoretical, 

and modified theoretical forcing functions 
3 shows an analysis of the forcing function. The broken black line is the forcing function 
according to the neck collapse function described by Eq. (4). Without any damping 
mechanisms, it shows a quadratic increase over time without limit. The solid black line shows 
the forcing function determined by analyzing the acoustic radiation measured from the bubble. 
This is done by computing the bubble wall acceleration from the measured acoustic pressure, 
integrating the wall acceleration to obtain the wall velocity, and then integrating again to  
obtain the wall displacement. These three terms can then be added according to Eq. (3) to 
determine the forcing function required to produce the observed pressure field. The vertical 
gray lines show the standard deviation of the forcing function, determined by averaging 50  

 



 

 

Fig.4 The predicted peak pressure versus observed pressure of the smaller bubble in a fragmentation 
product pair. The grey dots show a scatter plot of predicted versus observed pressure. The 14 black 

squares show the mean of the predicted peak pressure for all the data points lying within a bin centered 
on the square. The vertical black lines running through the center of the squares show the standard 
deviation of the data points. The solid grey line shows a 1:1 correspondence between predicted and 

observed pressures 

observations. The dash-dot forcing line in the top plot shows an empirical forcing function 
based on the ideal quadratic form that includes the effects of damping on neck retraction. This 
function was constructed by introducing the time-varying exponent: 
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2. FRAGMENTING BUBBLES  

 The acoustic excitation model described in chapter 1 can be applied to fragmenting 
bubbles. Measurements of the sounds radiated by fragmenting bubbles were obtained by 
introducing bubbles between two opposing fluid jets placed directly above the injection 
nozzle. The resulting sound signatures were analyzed for peak pressure, frequency and decay 
rate as reported in Deane and Stokes7. The excitation model for fragmenting bubbles begins 
with the retracting neck model and adds the assumption that the neck of air joining the two 



proto-bubbles immediately before fragmentation is symmetrical about the rupture point. The 
neck slope can be determined from the peak pressure radiated by one bubble product and used 
to predict the peak pressure of the other bubble product. The result of this analysis is shown in 
Figure 4, which shows predicted peak pressure versus observed peak pressure as grey dots. 
The black boxes show the mean predicted pressure for 14 amplitude bins. The vertical lines 
running through the boxes indicate the standard deviation of the data within an amplitude bin. 
The solid grey line shows a 1:1 correspondence between the observed and predicted pressures. 
Although there is significant scatter in the data, the mean predicted pressure follows the 
observed pressure well between 0.05 and 0.3 Pa. There is a systematic under-prediction of 
approximately 20% beginning at about 0.3 Pa and increasing to 100% at 2 Pa. The few data 
points at amplitudes less than 0.05 Pa do not show a good agreement between predicted and 
observed pressure.  

 

3. CONCLUDING REMARKS  

 The sound produced by a bubble released from a nozzle is consistent with the forcing 
accompanying the collapse of the neck of air formed immediately after bubble detachment. 
The neck collapse is driven by surface tension forces and drives the bubble into oscillation by 
rapidly decreasing the bubble volume. An extension of the model to the sound radiated by 
fragmenting bubbles shows reasonable agreement with experiment. 
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