PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of acoustic techniques for habitat mapping

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Habitat mapping has become an increasingly important application of remote sensing. Active and passive acoustic techniques have greatly improved in the last decade, and their use extends into other spheres to show their economic, legal, political and environmental benefits. This paper reviews the current status of acoustic techniques for habitat mapping. Traditional techniques include echosounders, multibeam systems and sidescan sonars. Passive techniques are also presented, along with geoacoustic inversion and acoustic daylight imaging. The developments in new techniques such as non-linear acoustics, synthetic aperture and interferometry are reviewed. Some emerging techniques are showing increasing potential for habitat mapping, and bistatic sonar, parametric SAS and 3-D chirp profiling are briefly reviewed. Leading international programmes are now making use of these techniques, most often in combination, and their results inform the recommendations for future uses and desired technological developments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Department of Physics, University of Bath Claverton Down, Bath BA2 7AY, UK, pyspb@bath.ac.uk
Bibliografia
  • 1. J.S. Houziaux, K. Degrendele, A. Norro, J. Mallefet, F. Kerckhof, M. Roche; Gravel fields of the western Belgian border, southern Bight of the north sea: a multidisciplinary approach to habitat characterization and mapping, Proc. 2nd International Conference "Underwater Acoustic Measurements: Technologies & Results", p. 847-853, 2007.
  • 2. P.C. Valentine, G.R. Cochrane, K.M. Scanlon; Mapping the seabed and habitats in National Marine Sanctuaries – Examples from the East, Gulf and West Coasts, Mar. Technol. Soc. J., vol. 37, no. 1, p. 10-17, 2003.
  • 3. MESH, Development of a framework for Mapping European Seabed Habitats (MESH), http://www.searchmesh.net, 2006.
  • 4. E. Pouliquen, A.D. Kirwan, Jr., R.T. Pearson, Rapid Environmental Assessment, NATO SACLANTCEN Conference Proceeding CP-44, 290 pp., 1997.
  • 5. V. Hühnerbach, Ph. Blondel, V.A.I. Huvenne, A. Freiwald; Habitat mapping on a deep-water coral reef off Norway, with a comparison of visual and computer-assisted sonar imagery interpretation, in “Habitat Mapping”, B. Todd and G. Greene (Eds.), Geological Association of Canada, 304 pp., in press.
  • 6. A.J. Kenny, I. Cato, M. Desprez, G. Fader, R.T.E. Schuttenhelm, J. Side, An overview of seabed-mapping technologies in the context of marine habitat classification, ICES J. Marine Science, vol. 60, no. 2, p. 411-418(8), April 2003.
  • 7. T.P. LeBas, V.A.I. Huvenne, Acquisition and processing of backscatter data for habitat mapping - comparison of multibeam and sidescan systems, Applied Acoustics, in press.
  • 8. R. Bozzano, A. Siccardi, A high-frequency approach for seabed vegetation characterisation, in “High-Frequency Acoustics in Shallow Water” (N.G. Pace, E. Pouliquen, O. Bergem, A.P. Lyons, eds.), SACLANTCEN Conf. Proc. CP-45, p. 57-641997.
  • 9. A. Kruss, J. Tęgowski, J. Wiktor, A. Tatarek, S. Olenin, D. Daunys, N. Gorska, Z. Klusek, Acoustic characterisation of benthic habitats in Hornsund Fjord (the Svalbard Archipelago), Proc. ECUA 2006, p. 311-316, 2006.
  • 10. E. Pouliquen, X. Lurton; Identification of the nature of the seabed using echo sounders, J. Phys., vol. 4, no. 2(C1), p. 941-944, 1992.
  • 11. J. Tęgowski, Z. Lubniewski, The use of fractal properties of echo signals for acoustical classification of bottom sediments, Acta Acustica, vol. 86, no. 2, p. 276-282, 2000.
  • 12. G.J. Heald, N.G. Pace; An analysis of 1st and 2nd backscatter for seabed classification, Proc. ECUA-1996, p. 649-654, 1996.
  • 13. Ph. Blondel, B.J. Murton, Handbook of Seafloor Sonar Imagery, PRAXIS-Wiley, 314 pp., 1997.
  • 14. Ph. Blondel , Seabed classification at continental margins, in Ocean Margin Systems, G. Wefer, D. Billett, D. Hebbeln, B.B. Jorgensen, Tj. Van Weering (eds), p. 125-141, Springer, 2002.
  • 15. G.M. Wenz, Acoustic ambient noise in the ocean: Spectra and sources, J. Acoust. Soc. Am., vol. (34), pp. 1936-1956, 1962.
  • 16. B.R. Kerman (ed.); Natural physical sources of underwater sound, Kluwer, 750 pp., 1993.
  • 17. M.A. McDonald, C.G. Fox; Passive acoustic methods applied to fin whale population density estimation, J. Acoust. Soc. A., 105, no. 5, p. 2643-2651, 1999.
  • 18. R. Rountree, C. Goudey, T. Hawkins, Listening to Fish: Proceedings of the International Workshop on the Applications of Passive Acoustics to Fisheries, 172 pp., 2002.
  • 19. P.D. Thorne, Laboratory and marine measurements on the acoustic detection of sediment transport, J. Acoust Soc.Am., 80 (3), p. 899-910, 1986.
  • 20. J. Wladichuk, W. Megill, Ph. Blondel; A bioinspired approach to sound localization in the underwater coastal environment; Proc. 2nd International Conference "Underwater Acoustic Measurements: Technologies & Results", p. 917-924, 2007.
  • 21. A. Caiti, R. Chapman, S.M. Jesus, J.P. Hermand; Acoustic sensing techniques for the shallow-water environment: Inversion methods and experiments, Springer: Dordrecht, 2006.
  • 22. Huang, C.F., P. Gerstoft, W.S. Hodgkiss; Uncertainty analysis in matched-field geoacoustic inversions, J. Acoust. Soc. Am., vol. 119, no. 1, p. 197-207, 2006.
  • 23. C.Gervaise, S. Vallez, C. Ioana, Y. Stephan, Y. Simard, Passive acoustic tomography: new concepts and applications using marine mammals: a review, J. Mar. Biol. Assoc. UK, vol. 87, p. 5-10, 2007.
  • 24. N. C. Makris, F. Ingenito, W. A. Kuperman, Detection of a submerged object insonified by surface noise in an ocean waveguide, J. Acoust. Soc. Am., vol. 96, p. 1703-1724, 1994.
  • 25. M.J. Buckingham, Rapid environmental assessment with ambient noise, Proc. ECUA-2004, p. 529-535, 2004.
  • 26. J. R. Potter, M. Chitre, Ambient noise imaging in warm shallow seas; second-order moment and model-based imaging algorithms, J. Acoust. Soc. Am., vol. 106, p. 3201-3210, 1999.
  • 27. C. Brown, Ph. Blondel (eds.), The application of underwater acoustics for seabed habitat mapping, Applied Acoustics Special Issue, in press (2008).
  • 28. C.R. Bates, P. Byham, P., Swath-sounding techniques for near shore surveying, The Hydrographic Journal, v. 100, p. 13-18, 2001.
  • 29. D.J. Wingham, N.G. Pace, R.V. Ceen, An experimental study of the penetration of water/sediment interface by parametric array, J. Acoust. Soc. Am., 79, pp. 363-374, 1986.
  • 30. J.Y. Guigné, N.G. Pace; An analytical acoustic framework to quantify the health of benthic habitats, Proc. 2nd International Conference "Underwater Acoustic Measurements: Technologies & Results", p. 901-908, 2007.
  • 31. R.L. Cloet, C.R. Edwards, The Bathyscan Precison Swath Sounder, Oceans, vol. 86, pp. 153-162, 1986.
  • 32. X. Lurton, An introduction to underwater acoustics, PRAXIS-Springer Verlag, 380 pp., 2002.
  • 33. F. Jean, Shadows, a synthetic aperture sonar by IXSEA, Proc. Inst. Acoustics, vol. 28(5), p. 24-30, 2006.
  • 34. P.T. Gough, M.A. Noonchester, A.J. Hunter, M.P. Hayes; Imagery from multi-frequency SAS: A comparison of simulated and experimental results, Proc. Inst. Acoustics, vol. 28(5), 31-38, 2006.
  • 35. M.A. Pinto, A. Bellettini, R.D. Hollett; A comparative review of high-resolution synthetic aperture sonar and radar research, Proc. Inst. Acoustics, vol. 28(5), 81-88, 2006.
  • 36. D.S. Burnett, M. Zampolli; A unified continuum mechanics approach for structural acoustic finite-element modelling of target scattering, Proc. ECUA-2004, p. 423-430, 2004.
  • 37. Ph. Blondel, P.F. Dobbins, N. Jayasundere, M. Cosci; High-frequency bistatic scattering experiments using proud and buried targets, in “Experimental Acoustic Inversion Techniques in Shallow-Water”, A. Caiti, R. Chapman, S. Jesus, J.-P. Hermand (eds.), Springer, p. 155-170, 2006.
  • 38. N.G. Pace, Ph. Blondel (eds.), Boundary influences in high-frequency, shallow-water acoustics, University of Bath Press, 488 pp., 2005.
  • 39. Ph. Blondel, A. Caiti (eds.); Seafloor Imaging and Toxicity of Buried Waste – Results from the EU-SITAR Project, Praxis-Springer, 230 pp., 2006.
  • 40. D. Ristow, K. Hinz, J. Hauschild, T. Gindler, A. Berhorst, C. Bönnemann; Imaging the subsurface with 2-D and 3-D seismic data”, in Ocean Margin Systems, G. Wefer, D. Billett, D. Hebbeln, B.B. Jorgensen, Tj. Van Weering (eds), p. 33-55, Springer, 2002.
  • 41. R.M.K. Plets, J.K. Dix, J.R. Adams, J.M. Bull, T. Henstock, M. Gutowski, A.I. Best; 3D reconstruction of a shallow archaeological site from high-resolution acoustic imagery – A case study, Proc. ECUA-2006, p. 757-762, 2006.
  • 42. M. Gutowski, J.M. Bull, J.K. Dix, T.J. Henstock, P. Hogarth, T. Hiller, T.G. Leighton, P.R. White, 3-D high-resolution acoustic imaging of the sub-seabed, Applied Acoustics, vol. 69, no. 3, p. 262-271, 2008.
  • 43. M. Fink, Acoustic Time-Reversal Mirrors, in “Imaging of complex media with acoustic and seismic waves”, M. Fink, W.A. Kuperman, J.P. Montagner, A. Tourin (eds.), Springer, p. 74-80, 2002.
  • 44. E. Pouliquen, L. Pautet, P. Guerrini, A.P. Lyons, A. Tesei; “Detection of a partially buried object using a time-reversal technique”, Proc. ECUA-2004, p. 483-488, 2004.
  • 45. J.P. Hermand; Acoustic remote sensing of photosynthetic activity in seagrass beds, in “Scaling methods in aquatic ecology, measurements, analysis, simulation”, L. Seuront and P.G. Strutton (eds.), CRC Press, p. 65-96, 2004.
  • 46. P.S. Wilson, K.H. Dunton; Seagrass acoustics: Results of an experimental laboratory investigation, Proc. 2nd International Conference "Underwater Acoustic Measurements: Technologies & Results", p. 383-390, 2007.
  • 47. F.R. Cottier, G.A. Tarling, A. Wold, S. Falk-Petersen; “Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord”, Limnol. Oceanogr., vol. 51, no. 6, p. 2586-2599, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0018-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.