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 The paper presents results of theoretical analysis of the finite amplitude plane wave 
propagation problem. The case of harmonic plane wave propagation in non-dissipative 
medium was considered. The mathematical model and some results of numerical 
investigations are presented. The mathematical model was built on the basis of one-
dimensional continuity equation, equation of motion in differential form and state equation. 
The finite difference method was applied to solve the problem numerically. The pressure 
changes and harmonic pressure amplitude changes were analysed. The results of computer 
calculations were compared with solution of the Burgers equation.  
 
 

INTRODUCTION 

The mathematical model of finite amplitude wave propagation problem is described 
basing on continuity, motion and state equations. The system of these equations describes 
pressure, velocity and density changes in medium. They are usually converted to one 
nonlinear partial differential equation. The nonlinear equation of acoustics is one of them. It 
allows to analyse pressure changes along sound beam. However in practice equations which 
have easier form are used. For example, the KZK equation is very often used during 
theoretical studies. These equations have not analytical solutions till now and consequently it 
is necessary to solve them numerically. Theoretical analysis of the plane wave propagation is 
possible using the Westervelt equation and the Burgers equation [1, 2]. Existence of the 
Burgers equation solution together with knowledge of theoretical formulas of harmonic 
pressure amplitudes enable to verify correctness and to discus accuracy of calculations. 

The aim of the paper was to present mathematical and numerical models of the finite  
amplitude wave propagation problem in non-dissipative medium which are built on the basis 
of continuum mechanics equations. The convergence and accuracy of obtained discrete 
equations are discussed. Numerical calculations were carried out for different values of 
physical and numerical parameters.  



1. MATHEMATICAL MODEL 

To build the mathematical model of finite amplitude plane wave propagation problem 
the one-dimensional continuity equation and equation of motion in differential form are 
considered:   
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where p denotes pressure, ρ – density of the medium and  v – velocity. To close the system 
state equation is added 
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where  is acoustic pressure, ρ0' ppp −= 0 – medium density at rest, c0 – speed of sound, ε – 
nonlinear coefficient. Substituting equation (3) to equations (1) and (2) we obtain system of 
two first order partial differential equations: 
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Assuming that harmonic plane wave propagates in water, the boundary condition can be 
written in following form: 
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where fπω 2= , f - fundamental wave frequency. Moreover it is assumed that pressure '  and 
velocity v are periodic functions of the time coordinate. 

p

 The Burgers equation is often used to analyse finite amplitude plane wave propagation 
problem. If the acoustics Reynolds number is big (Rea>>1), the dissipative term can be 
omitted and then the Burgers equation is written in following form: 
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where 0/ cxt −=τ .  



The waveform change is equivalent with spectrum change. The harmonic analysis is 
very often used to investigate wave distortion. The harmonic pressure amplitudes are defined 
in following form:  
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0

3
00

p
cxN εω

ρ
=  and  Jn is the Bessel function of the first kind of order n.  

 
2. NUMERICAL SOLUTION 

Let us define new normalized functions 
0

'
p
pP =  and v

p
cV
0

00ρ= . Substituting them into 

(4) we obtain system of two partial differential equations: 
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To solve this system of equations the Lax method is used. Let we define nodal points as 
follows xixtmt im Δ=Δ= , . After approximation of derivatives equations (8) may be written in 
following way: 
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where:  , ),(),,( mi
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             tδ  - difference operator of differential operator  t∂∂ /   
             xδ  - difference operator of differential operator  x∂∂ /   
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3. NUMERICAL INVESTIGATIONS 

Solving the system of difference equations (9) we obtain pressure and velocity at the 
mesh points . During finite amplitude wave propagation we observe shape changes 
step by step. Figure 1 presents normalized pressure as a function of time obtained for different 
distances. Numerical calculations were carried out assuming that harmonic wave which 
frequency f=1 MHz and amplitude p

),( mi tx

0=150 kPa is propagated in water where medium density 
at rest ρ0=1000 kg/m3, speed of sound c0=1500 m/s, nonlinear coefficient ε=3.5. Curve 
number 1 presents shape of primary wave curves 2 and 3 show pressure at distance x=0.3 m 
and x=0.6 m respectively. Similar results we obtain for velocity. Figure 2 presents four first 
harmonic pressure amplitudes along x axis calculated for the same values of physical and 
numerical parameters. 

 

 
Fig.1 Normalized pressure as a function of time: 1- x=0, 2 - x=0.3m, 3 - x=0.6 m 

 

 
Fig.2 Normalized harmonic pressure amplitudes along x axis 

 
The correct choice of the net spacing values is very important during numerical 

calculations. To analyse this problem in detail, the results of numerical calculations of 
pressure and their harmonic amplitudes were compared with solution of the Burgers equation. 



The results of numerical calculations presented in Fig. 1 were carried out for Δt=0.0039 μs. 
Similar results of pressure changes obtained for Δt=0.0156 μs shows next figure. Note that in 
this example the time net spacing Δt and consequently distance one Δx were not small enough 
and for higher distances we observe numerical errors. 

 

 
Fig.3 Normalized pressure as a function of time: 1- x=0, 2 - x=0.3m, x=0.6 m 

 
The correct choice of numerical parameters is not only one problem during numerical 

calculations. It is important to remember that proposed numerical approximation of the 
derivatives requires continuity of solution. Solution of our problem becomes non-continuous 
for distances higher then xN. For using till now physical parameters, this distance is equal 
xN=1 m.  

Figure 4 shows normalized pressure calculated for two different distances and two 
different values of time steps. Left figure presents results obtained for distance x=0.4 m, right 
figure presents similar results obtained for distance x=0.8 m respectively. Curve number 1 
(dashed line) shows waveform obtained for Δt=0.0039 μs. Curve number 2 (solid line) was 
obtained for Δt=0.0156 μs. 

 

 
Fig.4 Normalized pressure as a function of time: 1 - Δt=0.0039 μs, 2 - Δt=0.0156 μs  



Figure 5 shows four first harmonic pressure amplitudes along x axis obtained for 
different net spacing Δt. Left figure presents first harmonic pressure amplitude calculated for 
Δt=0.0156 μs (solid line) and Δt=0.0039 μs (dashed line). Similar results obtained for second, 
third and fourth harmonic component are shown in right figure.  

 

 
Fig.5 From first to fourth harmonic pressure amplitudes along x axis for different net spacing Δt  

 
To analyse correctness of the results obtained numerically, the results of calculations 

were compared with theoretical solutions. The absolute error )(~)()( xpxpxE nnn −=  and 

relative error )()(~)()( xpxpxpxR nnnn −=  were analysed. Functions pn and np~  denote 
harmonic pressure amplitude calculated using formula (7) and numerically respectively. 
Numerical calculations were carried out for different values of time net spacing. The 
calculations were done for distances to x=0.9 m. 

Tables 1 and 2 collect the maximum absolute errors and relative error of first five 
harmonic pressure amplitudes for fixed steps Δt respectively.  
 

Table 1. Maximum absolute error of harmonic pressure amplitudes 
 1E  2E  3E  4E  5E  

Δt=0.0156 μs 2.95·10-3 6.63·10-3 1.05·10-2 1.44·10-2 1.85·10-2

Δt=0.0078 μs 7.25·10-4 1.54·10-3 2.31·10-3 2.98·10-3 3.59·10-3

Δt=0.0039 μs 1.82·10-4 3.83·10-4 5.66·10-4 7.20·10-4 8.49·10-4

 
Table 2. Maximum relative error of harmonic pressure amplitudes 

 1R  2R  3R  4R  5R  
Δt=0.0156 μs 3.22·10-3 1.99·10-2 5.82·10-2 1.26·10-1 2.34·10-1

Δt=0.0078 μs 7.91·10-4 4.62·10-3 1.28·10-2 2.61·10-2 4.53·10-2

Δt=0.0039 μs 1.99·10-4 1.15·10-3 3.14·10-3 6.30·10-3 1.07·10-2

 
Figure 6 presents relative errors of first harmonic pressure amplitude obtained for 

different values of time step Δt. Next figure shows the relative error for fixed harmonic 
pressure amplitudes calculated with step Δt=0.0039 μs. In this example the maximum relative 
error of waveform at distance x=0.8 m is equal 0.033. 



 
Fig.6 Relative error of first harmonic pressure amplitude:  

1 - Δt=0.0156 μs, 2 - Δt=0.0078 μs, 3 - Δt=0.0039 μs 
 

 
Fig.7 Relative error for different harmonic pressure amplitudes 

 
To complete the discussion about accuracy, solution of equations (9) and solution of the 

Burgers equation obtained numerically were compared. The relative error of harmonic 
pressure amplitudes at distance x=0.8 m obtained using presented in this paper numerical 
model when Δt=0.0039 μs are follows: 

 
    R1=1.92·10-4,   R2=1.07·10-3,   R3=2.88·10-3,   R4=5.71·10-3.   
 

Solving numerically the Burgers equation we obtain: 
 
    R1=3.01·10-3,  R2=2.09·10-2,   R3=1.19 ·10-2,   R4=1.94·10-2. 

 
The finite difference method with the same values of physical and numerical parameters then 
earlier was used to solve equation (6). These results show that convergence of calculations is 
faster for proposed model than for numerical solution of the Burgers equation. 



Presented till now results of computer calculations were carried out with different 
values of numerical parameters for the same values of primary wave frequency and pressure, 
i.e. for  f=1MHz and p0=150 kPa respectively. Numerical investigations were done not only 
for different step sizes but also for different values of physical parameters. Figure 8 shows 
harmonic pressure amplitudes obtained for wave which frequency f=1 MHz and pressure 
p0=300 kPa. The results of computations with pressure p0=150 kPa and frequency f=0.5 MHz 
presents right figure. Note that now calculations were carried out for different distances than 
earlier. In these examples the discontinuity appears at distance xN=0.5 m and xN=2 m 
respectively and it is the reason why investigated distances are different.   

 
a) b) 

Fig.8 Normalized harmonic pressure amplitudes along x axis:  
a) f=1 MHz, p0=300 kPa, b) f=0.5 MHz, p0=150 kPa  

 
4. CONCLUSIONS 

 The finite amplitude plane wave propagation problem was considered. The 
mathematical model, which was worked out on the basis of mechanics equations and some 
results of numerical investigations have been presented. The numerical calculations were 
carried out using own computer program that was worked out on the basis of obtained 
mathematical model. The results of numerical calculations confirm that proposed numerical 
model is convergent. Moreover this method allows to obtain the same accuracy using higher 
step sizes than solving numerically the Burgers equation. However it is necessary to 
remember that it can be used only for continuous solutions of the problem. The presented in 
this paper mathematical and numerical models can be used to analyse the wave propagation in 
non-dissipative medium or for small distances when dissipation effects are not very big. 
When they cannot be omitted this model must be extended. However in this situation we 
obtain different type of partial differential equations and it is necessary to build more 
complicated difference equations. 
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