
MULTIPLE SCATTERING CONTRIBUTION TO TRABECULAR 
BONE BACKSCATTER 

 
 

JANUSZ WÓJCIK, JERZY LITNIEWSKI, ANDZEJ NOWICKI 
 
 

Institute of Fundamental Technological Research, Polish Academy of Sciences 
Świętokrzyska 21, 00-049 Warsaw, Poland 

Jwojcik@ippt.gov.pl 
 
 

Integral equations that describe scattering on the structure with step rise parameters, 
have been numerically solved on example of  the trabecular bone model. The model consists 
of several hundred elements with randomly selected parameters. The spectral distribution of 
scatter coefficients in subsequent orders of scattering has been presented. 

 
 

INTRODUCTION 
  

The evaluation of bone strength requires not only the knowledge of its mean density but 
also of its microscopic structure. The ultrasound signals that have been scattered in trabecular 
bone contain information of the properties of the bone structure, and hence the analysis of the 
backscatter could be useful in assessment of the microscopic architecture of the bone. It has 
been demonstrated that the use of the backscattering models of bone enabled an assessment of 
some micro-structural characteristics from the experimental data.  
          Starting from Wear’s work [1], the best of the authors' knowledge almost all of the 
reported bone scattering models assumed, not precisely speaking the Born approximation, and 
consequently the multiple scattering within the bone trabeculae, was neglected. Trabecular 
bone consists of trabeculae whose mechanical properties differ significantly from the 
surrounding marrow and therefore the ultrasonic wave is strongly scattered. The work of 
Bossey et al.[2] presents analytically advanced approach. The scattering structure corresponds 
to the real one. Unfortunately this approach does not enable determination of the influence of 
multiple scattering on total The field. The Wear’s [3] work contains the review of methods 
and problems of bone sonometry.  

The aim of the presented paper was the evaluation of the contribution of the first, 
second and higher order scattering (multiple scattering) into total scattering of the ultrasounds 
in the trabecular bone. The scattering, due to interconnections between thick trabeculae, 
usually neglected in trabecular bone models, has been also studied. Our model is fully scaled.



The basic element in our model of trabecular bone was an elastic cylinder with varying 
finite-length and diameter as well as orientation. The density and speed of sound were similar 
to those of the bone tissue. The cylinder was applied in building of the multi-element 
structures, similar to the architecture of the trabecular bone, taking into account variation of 
elements size and spatial configuration. The field scattered on the bone model was evaluated 
by solving numerically the integral form of the Sturm-Liouville equation in the version that 
describes longitudinal wave in inhomogeneous media. 

For the calculated scattered fields the effective cross-sections as well as the Broadband 
Ultrasonic Backscatter (BUB), directly related to the detected echo-signal level, were 
determined. Calculations were performed for the frequency ranging from 0.5 to 3 MHz.  

 
1.  BASIC EQUATIONS 

Lame’s equation for longitudinal disturbances of stress in non-homogeneous and 
isotropic medium can be written as [4] 
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where: is normalized stress: ),( tPP x= )(xgg = , )(xcc = are respectively: normalized 
density and speed of sound of the longitudinal waves,  are normalized coordinates in 
space and time, whereas  are normalized operators of gradient, divergence and 
derivation in respect to time. The normalization was performed as follows:
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dimensional variables are accented.  The characteristic wave number and pulsation0K 0ω  are 
restricted by the relation: 000 ω=cK . 00 2 Tπω ≡ , where is reference time ( e.g. Time 
window). A consequence of the applied normalization method is equality of non-dimensional 
pulsation 
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0ωω≡n and frequency n, and the wave number nnk ±=)( in dispersion less 
media. Most often for solid body Eq.(1) is written for displacement vector . The 
equation (1) was derived on the basis of the relation   
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convolution type operator describing the absorption [5]. We assume that for solid state 
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So called absorption coefficient  is a eigen value  for the eigen function )(na A )exp( tni ⋅⋅ , 
that means , where [ )(F)( tAna = ] [ ]•F  is the Fourier transform of time, while  is the 
kernel of .  In dimensional units  
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can be written as follows: 
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Complex wave number is given by k nnainnk )(21)( +±≡ )(nian +±≅ . Eq.(2) was 
written when Helmholtz operator was distinguished for  dominant reference medium 
surrounding regions of material parameter disturbances. Eq.(3) is based on the assumption 
that only in reference medium .   
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2. MEDIUM CONSTRUCTION AND POTENTIALS. 
 

We assume that reference medium surrounds L regions lυ  of space. The regions are 
bounded by surfaces  . We suppose that thels Ll ,...,1= lυ  are open sets in space, however 

lll s∪=υυ are closed. Each region lυ  is filled with homogeneous medium and its density 
, as well as sound speed 1≠= constgl 1≠= constcl . The multiple-theory sum of the lυ  sets 

describes the structure being submerged in reference medium. We assume that elements of 
structure do not cross in a sense of 3D measure of volume .  )(3 ⋅d
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Thus spatial distributions of sound speed and density have a form: 
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where )( ll υχχ ≡ is the characteristic function of lυ , 1=χ  for lυ∈x , 0=χ  for lυ∉x , 

21=χ  for .  The characteristic function of structure is ls∈x ∑=
l

l )()( υχυχ .  

The characteristic functions lχ  can also be defined in the following way: ))(()( xx ll Sχχ ≡ , 
where  satisfies the following conditions:)(xlS 0)( =xlS  for  ls∈x  surface equation , 

for  
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0)( ≥xlS lυ∈x ,   for 0)( <xlS lυ∉x . Taking into account that χ  is the Hewisaid’s 
distribution we obtain: 1)( =lSχ  for  and 0>lS 0)( =lSχ  for 0<lS .  
Because )()( llS SS δχ =∂ , where ( )⋅δ  is the Dirack distribution, then: 
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Vector  is normal to equiscalar surface lgd∇ lgδ  and  its length is inversely proportional to 
density. It is directed into growing values of . Vector gd )()( xxu ll S−∇≡  is externally 
normal to  in  and is unit. Because ls ls∈x { }Llslll ,...,1,:)()( =⊥= uxuxu  is a general field 
of vectors being normal to the structure (surface lss ∪= ), then:  
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By neglecting detailed discussion, we can rewrite Eq.(9) in the form: 
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where: , ∑≡
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3. SCATTERING EQUATIONS 

For the assumed model of structure of medium the Eq.(2) takes the form 
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The field B is determined only on surface of the structures υ . Further, if it will not make 
misunderstanding the non-dimensional pulsation will be neglected in the argument list. When 
transforming Eq.(13) into integral equation and using features of distributions )(sδ  and )(υχ  
we obtain 
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Where: )4)(exp(),( rrniknrG π≡ , rxx =′= ),(rr , xxr ′−= ,and υd is a elementary volume 

in υ , ds is a elementary surface on . is a solution of  Helmholtz equation in 
reference medium (incident field), 

s ),()( 00 nCC xx ≡
)),,(()),(( nrGrG xxxx ′=′  is the Green function of the 

Helmholtz equation . The integrals in Eq.(14) describe the scattering of incident field on 
potentials and  of the structure. It is sufficient to determine the equation forV Q υ∈x  in order 
to solve it. When the solution is substituted to the integrals in Eq.(14) it gives solution in 
whole medium. Applying  to the both sides of Eq.(14) we get equation for the field∇⋅)(xu B . 
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By grouping the functions and their normal derivatives in vector function  
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and introducing the scattering field 0CCE −≡ , we may rewrite Eqs.(14-15) in the compact 
form   
     
                                   ( ) 0EE −=+ GWI          ( )CWGC ∫≡ oGW                                    (18) 

where, the kernel of operatorGW is 2×2 matrices determined by diadic vectors product signs 
by , o 00 CE GW= .  is the identity operation I )(E)(E xxI =′ . Equivalent form of the 
operator is  GW
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is given by Eq.(18) or Eq.(19) for 

lmml
GWGW

,
∪=

lmGW WW mm χ=  and lυ∈x . For lυ∈′xx, and 
, (no self interaction).  We set xx ′= 0GW =lm lll GWGW ≡  for diagonal cells .      ml =

 

4. SOLUTION METHOD 

We seek the solution of Eq.(18) for υ∈x in the form  
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where  is the solution of Eq.(18) in l- th element of the structure under the assumption that 
the only scattering field in 
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where ( 1)−+≡ ll GWIH denotes inverse operator. The fields  determine a field in medium 
in the first order of scattering (single scattering). The reminder 

1E l
2R denotes a field in structure 

created due to interaction between structure elements in the second and higher orders of the 
scattering (multi-scattering).  The 2R  satisfies equation   
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The field  is calculated as the field from the m- th element failing on l-th element. Then we 

repeat the described above procedure. We suppose that 
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and after substitution  12
mm EE → 3R satisfies Eq. (22).  

Generally, in j-th order of the scattering  1RER ++=∑ j
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Then in point  of the medium the total j-th order component of the scattered field takes the 
form 
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The total scattered field is given by sum of the . )(xjE
We obtain the discrete (numerical) representation of the above procedure when is replaced 
by the weight system  for numerical integration’s respect sampling structure vector 

. Where  is the sample index in l-th element of the scattered structure. 
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5. RESULTS 
 

The skeleton of the model of trabecular bone structure, applied in scattering field 
calculations, is presented in Fig.1(a). One of skeleton structures parallel to the x-z plane 
(horizontal respect incident field) is shown in Fig.1(b). The cylinder with Φ and length d was 
adopted as the model of trabecular. Each segment of the skeleton is the axis of cylinder. 
The skeleton was obtained randomly by displacement of nodes in each layers of regular 
structure built of cuboids. Their dimensions are 2mm in the y direction and 1×1 mm in the x 
and z directions. The uniform probability was assumed for displacements in range  (-0.15; 
0.15) mm. The horizontal structures were adjusted to new node positions. Then some 
elements were randomly (uniform probability) eliminated from the structure. The results are 
similar to those which were presented in [6].   
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Fig.1. (a) left: full skeleton of the trabecular bone model; right: one of horizontal substructures in the 
skeleton. (b) the cross-section of the real trabecular bone structure 

   
Values of sound speed and densities of each trabecualr were selected based on Gamma 
distribution. Maximum deviation from mean values 4000 m/s and 2000 kg/m3 was assumed as 
±5%. For trabecular, in y direction and in horizontal planes, mean values Φ=0.05 and 0.04 
mm with deviations ±20% and ±25% respectively, were assumed. 
For surrounding medium (marrow - fluid filler) as well as surrounding space g0 = 1000kg/m3, 
c0=1500m/s. The absorption parameter for fluid filer was  2.3·10-4 Np/mHz.  Total number of 
elements (trabecular) was 409.   
The unit plane wave was assumed as incident field  ,))(exp(0 zikC ν= 0≥z ]3,5.0[∈ν MHz 
with step 0.333 MHz . Dimensionless frequency is  90,...,16,15=n . 
 

5.1. SCATTERING FIELD DISTRIBUTION 
 

Exemplary distributions of scattering fields in subsequent orders and for selected 
frequencies were shown in Fig.2. Brightness refers logarithmic scale of values. Contour of the 
scattering structure and its location is shown by white rectangle whereas white narrow 
indicates direction of incident wave. The represented area is the rectangle with location[-
30,20]mm in z direction and [-15, 15]mm in x direction.  
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Fig.2. Distributions of fields in subsequent orders of scattering in rows: I, II, III, while in function of 

frequency from 0.5 MHz to 3 MHz they are shown in columns 
 
 

5.2. BACKSCATTER COEFFICIENTS. 
 

We define substructures: horizontal (denoted by “h”) as a set of all trabecular that are 
situated in planes being parallel to the x-z plane, and vertical ( denoted by “y’) as a set of all 
trabecular which are parallel to the y axis. 
In Fig.3 S is a sum of S1, S2 and S3, the effective backscatter cross-section coefficients, that 
were obtained in subsequent orders of scattering and in function of frequency ν . 
Multiplication factors, 50 and 5000, were applied for better representation. In the nearness of 
frequency ν =1.5 MHz, the estimated relations between values S1:S2:S3 from Fig.3 are as 
1:(0.01):(0.0001). The S1,2,3 are characteristics of the second order in respect to field. In case 
of characteristics linear in respect to field the proportions will be as 1:(0.1): (0.01) or even 
higher. 
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Fig.3. Effective backscatter cross-section decomposition in respect to scattering order 
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Fig.4. Contribution of substructures h and y in subsequent orders of scattering as well as in respect to 
frequency 

 
In Figure 4. a, b, c the contribution of substructures h and y to effective backscatter cross-
sections in subsequent orders of scattering is presented. Let us notice the validity change of 
substructures in transition from the first order to higher orders of scattering. It is visible in 
Figure 4.a and Figure 4.b (the transition occurs for ν >1.3 MHz).  
In Fig.4.a the resonance for ν=0.75 MHz is observed. It is fully created by y substructure in 
which the trabecular length is 2mm. It corresponds to the resonance frequency. Similar 
analysis can be performed for other resonances using higher scattering orders. 
  
 



6. CONCLUSIONS 
 

In space-frequency range the method of solving of longitudinal wave scattering 
equations has been developed. It is convergent for high potentials and multi-element 
structures in numerical applications. The method is accurate in each order of scattering that 
means the calculated fields in subsequent order do not make corrections in scattering fields of 
former order. The Neuman’s iteration of integral equations of scattering produce the 
asymptotically converged series (if it is converging); this means that each subsequent element 
of series includes improving accuracy corrections to former elements for the selected structure 
element. The developed algorithm enables the analysis of the scattering field characteristics 
taking into account not only the scattering order but also the influence of selected 
substructures.  The examples of this effect has been presented.  

In the range up to 1.5 MHz the influence of higher scattering orders on characteristics of 
the first order in respect to the field is less than few percent. In the range above 1.5 MHz one 
can observe in higher orders even several percent resonance effect of scattering. 
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