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         The paper presents a simple method for improving multibeam sonar bearing accuracy. 
The principle proposed here is similar to the monopulse method, a solution commonly used in 
radars and sonars. With no manual or automatic beam rotation, the method offers a 
substantial reduction in the demand for sonar computational effort. It significantly reduces 
bearing error for a relatively high signal to noise ratio. The paper gives a boundary value of 
the output signal to noise ratio which when exceeded satisfactorily improves bearing 
accuracy. 

 
 

INTRODUCTION 

It is generally assumed that the bearing accuracy of multibeam sonars with delay-sum 
beamformers is equal to beam width. To improve accuracy, we can use high resolution 
methods for estimating spatial spectrum or the monopulse method. Because they are sensitive 
to noise and interference, spatial spectrum estimation methods are hardly ever used. 
Originally designed to generate two deflected beams for comparing their echo signal 
amplitudes, the monopulse method is more common. By rotating both beams echo signal 
amplitudes are eventually equalised and the angle at which the beams intersect determines the 
bearing. While today’s digital signal processing technology has replaced manual rotation with 
automatic rotation, obtaining equal signals in both beams is still very much an iterative 
procedure with a lot of computational effort. The article presents a simpler and more practical 
method for determining more accurate bearings without having to rotate beams. Bearing is 
determined as a result of single calculations without equalising signals in deflected beams.



 

 

1. METHOD DESCRIPTION 

We assume that the method for improving bearing accuracy will be applied in a sonar 
with a plane multi-element array with equally spaced d column centres. Let us assume that the 
number of columns 2M+1 is an odd number and the beams are deflected by the same angle 
approximately equal to the width θ3dB of the narrowest central beam. The sonar emits “chirp” 
sounding pulses with linear frequency modulation and mid frequency f0, bandwidth B and 
duration τ, propagating in water at velocity c. The beamformer generates a number of 
deflected beams with echo signal phase compensation at frequency f0. Matched filters in the 
frequency domain are placed at beamformer outputs where we obtain the functions of echo 
signals correlated with the sounding pulse for each beam. The sonar operator watches the 
correlation functions and selects targets for more accurate bearing. This triggers off the 
computational procedure, which yields the targets’ bearings. We will present the procedure 
for the simplest case with a single target in the central beam. 

Quadrature sampling of echo signal produces 2M+1, a sequence of complex samples 
x(n,m) which are the sum of the usable signal S0s(n,m) and Gaussian noise where n means the 
sample number in time domain, and m – number of the channel (array column). Assuming 
that the distance between the centres of array columns d is equal to half the length of the  
acoustic wave for frequency f0, we can assume with good approximation that the noises in the 
channels are not correlated. The sequences of samples are successively fed to the beamformer 
which generates two beams deflected from the central beam. The signals at beamformer 
outputs can be written as: 
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where yl(n) are complex samples of signals in the left beam, yr(n) – in the right beam and  
wl(m) and wr(m) are beamformer coefficients for the left and right beam respectively. The 
coefficients are described with these formulas: 
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where β  is the angle of beam deflection relative to the direction of the central beam acoustic 
axis. 

The outputs of both beams have filters matched to the sounding signal. The filtration 
applied in the sonar simulation is matched filtration in the frequency domain. It is equivalent 
to the correlation function when determined in the time domain. Signals yl(n) and yr(n) are  
transformed using the Fourier transform yielding two discrete spectra: 
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The Fourier transform of the sounding signal is determined as well. Assuming that the 
signal is approximately equal to s(n)=s(n,0) we get: 
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Signals at the output of the matched filter are equal to: 
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Formulas (2) show that the coefficients for the central beam w(m)=1. In the absence of 
noise, using formulas (1) and (3) we get: 
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Using formulas (5) we get: 
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where rss(n) is the function of sounding signal autocorrelation. 

The shape of the signal z(n) is shown in Fig. 1. 

 
Fig.1. Signal at the output of a matched filter (f0=15 kHz, B=1.5 kHz, ⎮=1.1s, 2M+1=13) 

 
While the signals in the right and left deflected beam are not fully correlated with the 

sounding signal, this does not significantly affect bearing accuracy as will be shown later. 
In the absence of noise the maximal values of the signals zl(n) and zr(n) related to the 

maximum of the correlation function, depend on target bearing. The relation between 
maximal values of these signals and bearing θ  are described with these beam patterns: 

 

)],n(zmax[
)],n(zmax[

)(b

)],n(zmax[
)],n(zmax[

)(b

r

r
r

l

l
l

β
θ

=θ

β
θ

=θ

         (8) 

Fig. 2 shows examples of beam patterns of deflected beams and the beam pattern of the 
central beam. Deflected beams are generated from a smaller number of array elements than 
the central beam, a requirement of the method in question. The same figure includes graphs of 
theoretical beam patterns with this formula: 
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Fig.2. Beam patterns (d=c/2f0, central beam 2M+1=13, deflected beams 2Md+1=11, β=5.50) 

 
As you can see from the figure, there are some clear deviations between the theoretical 

and real beam patterns within the side lobes. This range of angles is not used for further 
calculations. This explains the insignificance of incomplete echo signal and sounding signal 
correlation in the method in question. 

The next step in the method is to determine the function f(θ) defined as: 
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Fig. 3 shows the shape of the function using parameters given in Fig. 2. The same figure 
includes the beam pattern of the central beam. Function f(θ) was determined from the beam 
patterns calculated from the signals at matched filter outputs as: 
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For a specific bearing θ  the fractional expression on the right hand side of the above 
equation has a certain numerical value A in the range of (-1,1). Once it is calculated, bearing θ 
can be determined as: 

)A(f 1−=θ ,          (12) 

where f-1(⋅) is the inverse function of the function f(⋅) (f(θ)=f[f -1(A)]). 



 

 

 
Fig.3. Function f(θ) and beam pattern of the central beam b(θ) 

 
To ensure that the calculation results are not ambiguous, the function f(θ) must be 

injective. This condition restricts the scope of the function f(θ) to the mid range which is 
almost linear. It must be wider than the range determined by adjacent intersecting beamformer 
beams. Because adjacent beams tend to intersect at –3dB or higher, we can assume that the 
range in question should be wider than the three decibel central beam. The width of the range 
depends on the width of deflected beams and their angle of deflection. Let us discuss how the 
parameters are determined. 

Formula (10) shows that function f(θ)  reaches 1 and –1 for angles θ0 at which the beam 
patterns bl(θ0) and br(θ0) are zero. We can determine the positive value of angle θ0 from 
formula (9). It is equal to: 
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where 2Md+1 is the number of array elements for deflected beams which does not have to be 
equal to the number of elements for the central beam . 

Half of the three decibel width of the central beam is approximately equal to: 
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As has been said above, the angle θ0 should be greater from the angle θ3dB/2. Using 
formulas (13) and (14) the relation can be written as: 
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The above inequality requires an additional criterion, the result of the desired gradient 
of the function f(θ). To minimise bearing error the gradient should be relatively high. Because 
the gradient decreases as the width of deflected beams increases, it means that it decreases 



 

 

when the number of array elements 2Md+1 decreases. In addition the nearly linear shape of 
the function is obtained when angle θ0 is smaller than the angle of deflection of beams β. This 
condition produces the following inequality: 
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Inequalities (15) and (16) give us the following condition: 
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If either of the inequalities is satisfied for Md=M, the width of the usable range of the 
function f(θ) is not much bigger than the width of the central beam. To obtain the required 
reserve we can reduce the number Md. The example in Fig. 2 assumes that M=6, and Md=5. 
We then have: 
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00 5625 .. <β< . 

To obtain a wide usable range of the function f(θ) it was assumed that the angle ® is 
close to the lower boundary of the above range and amounts to β =5.50. 

Fig. 4 shows the function f -1(A) determined from theoretical beam patterns (formulas 
(9) and (10)) and the linear approximating function f -1(A) with this relation: 
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where θ0 is given in the formula (13). 

As you can see from the figure, the approximating function is not really different from 
the function f -1(A) and can be used for determining bearing. In this example for bearing θ=10 

bearing error is 0.0180 and for θ=20 bearing error is equal to 0.0330. The error can be reduced 
by correcting the formula (18): 
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For an experimentally selected correction δθ0=0.060, the error for θ=10 was reduced to 
0.0050, and for θ=20 – to 0.0080. Errors as small as these are technically insignificant because 
they are much smaller from those caused by noise in the system. 

 

2. BEARING ERRORS  

Before we analyse the effects of noise on bearing error, we will first define the values 
that characterise noise in the system. As has been said in the previous section, we will assume 
that uncorrelated white Gaussian noise is present at the outputs of sonar array elements. The 
input signal to noise ratio refers to the output of a single array element (receiver channel) and 
is equal to: 
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where Px is the power of the useful signal and σx
2 is the noise variance in the band of receiver 

B.  

 
Fig.4. Relation between the bearing and number A (experimental curve –broken line, approximating 

relation – straight line) 
 

Signal to noise ratio at beamformer output increases and with the wave incident from 
the direction of beam axis it amounts to: 
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where 2M+1 is the number of array elements. The improved signal to noise ratio is the result 
of summing of signal amplitudes (signal power increases (2M+1)2 times) and noise variances 
(noise variance increases (2M+1) times).  

The signal to noise ratio continues to improve at the output of the matched filter and 
amounts to: 
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where G is the spectral noise power density and BG=σx
2. 

In order to estimate bearing error, we could try and make the statistical parameters of 
error analytically dependant on statistical noise parameters. But because the system performs 
non-linear operations, the analysis becomes complicated and the results are not clear either. 
This is why we will present the results of simulation tests only. Developed in MATLAB 
environment, our programme simulates the functioning of a complete system with all the 
important parameters selected freely. In particular we can select signal amplitude, its band and 
duration, array parameters, noise variations and target bearing. Below are some selected 
results of the simulation and general conclusions about the effects of noise on bearing error. 



 

 

Fig. 5 shows the spread of bearing for three different bearing values. The results include 
1000 attempts for each bearing. The input signal to noise ratio is SNRx =2.5, band 
width B=1500 Hz, pulse duration τ =68 ms, number of array elements 2M+1=11. The 
output signal to noise ratio is determined from the formula (22) and is equal to SNRz =2812. 
Mean values of the bearing are given in the figure and standard deviations of the bearing 
are: for θ =00 – 0.0820, for θ =1.50 – 0.0850, for θ=30 – 0.1040. If we assume that beam width 
is the measure of beamformer bearing error and a double standard deviation of the bearing is 
the measure of error in this method, the improvement in accuracy has been about 40 times the 
original accuracy. 

 
Fig.5. Bearing spread (p – number of test) 

 

The simulation shows that all changes of the band width B, pulse duration τ,, signal 
amplitude and noise variance σx with a constant output signal to noise ratio SNRz=2812 (34.5 
dB) have practically no effect on the above standard deviations of bearing. This suggests that 
bearing error in this method depends on the output signal to noise ratio given in the formula 
(22). 

For the above SNRz the distribution of bearing probability density is similar to Gaussian 
distribution as is shown in the histogram in Fig. 6. It was determined based on 10000 attempts  
with the parameters as given in Fig. 5. 

The simulation shows that as the output signal to noise ratio increases, bearing accuracy 
continues to improve. If we denote the bearing error variance from the above example as σθ0

2, 
the error variance as a result of the improved signal to noise ratio amounts to: 
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where SNRz0=2812, a SNRz1 denotes an increased signal to noise ratio. As an example, for a 
tenfold improvement of the signal to noise ratio, the bearing variance also decreases ten times 
and standard deviation of the bearing decreases 16310 .=  times. 



 

 

 
Fig.6. Distribution of bearing probability density (θ=1.50) 

 
A deteriorated output signal to noise ratio has two negative effects. It changes the mean 

value of bearing and increases its standard deviation. This is illustrated in Fig. 7 which shows 
the changes in the mean value of bearing (solid lines) and the curve of standard deviation of 
bearing (broken lines) in the function of output signal to noise ratio. When bearing is equal or 
close to the direction of the central beam’s acoustic axis, its mean value does not in fact 
change while its standard deviation grows. The bigger the bearing, the faster are the changes 
in its mean value. While standard deviation does not increase much, determining bearing 
using this method is pointless when the output signal to noise ratio is lower by about 25 dB. 

 
Fig.7. Mean values and standard deviations of bearings in the function of the output signal to noise 

ratio (θ=00 , θ =1.50, θ =30) 



 

 

The reason why the mean value and standard deviation change is because the 
distribution of bearing error probability density changes as the output signal to noise ratio is 
decreasing. Fig. 8 shows an example of a histogram of bearing error probability density for a 
small signal to noise ratio. As you can see from the figure, the distribution of probability 
density is different from Gaussian distribution and its mean value has been significantly 
shifted. 

 
Fig.8. Distribution of bearing probability density (⎝ =1.50 , SNRz=13.4 dB) 

 

3. CONCLUSIONS 

The simulation has shown that the proposed method for determining target bearing can 
be used in sonars when the output signal to noise ratio is relatively high. To ensure good 
detection conditions the output signal to noise ratio usually amounts to some ten or more 
decibels. Consequently, the method in question requires a signal to noise ratio higher by about 
10 dB. This does not render the method useless because as a rule the requirements of output 
signal to noise ratio for target estimation (bearing in this case) keep growing. For a high 
signal to noise ratio, the method ensures a significant improvement in bearing accuracy. The 
advantage of the method lies in the simple algorithm for bearing determination without major 
computational effort.  

Real multibeam sonars track several targets in deflected beams. The algorithm 
presented here would only have to be slightly modified for that purpose with some 
multiplication of the computational effort. 
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