PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformable cell and deformable tissue as an area for application of nanoscale mechanics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Materials undergoing deformation based on various mechanisms are frequently applied to manufacturing of artificial muscle actuators. In this paper we introduce a methodological step towards more precise determination of investigation object related to such actuators. One defines a deformable cell and a deformable tissue in order to indicate which functions of such objects should be integrated for further applications. One accentuates role of nanoscale models of mechanics of materials as important on way towards design of the deformable cells.
Rocznik
Tom
Strony
99--112
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Sławianowski J.J.: Analytical mechanics of deformable bodies. PWN, Warszawa 1982.
  • [2] Sasaki D., Noritsugu T., Takaiva M.: Development of pneumatic soft robot hand for human friendly robot. J. Robotics and Mechatronics 15(2003), 3, 164–171.
  • [3] Choi S.B., Han Y.M., Kim J.H., Cheong C.C.: Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics 11(2001), 6, 677–690.
  • [4] Safak K.K., Adams G.G.: Modelling and simulation of an artificial muscle and its application to biomimetic robot posture control. Robotics and Autonomous Systems 41(2002), 225–243.
  • [5] Ghomshei M.M., Tabendeh N., Ghazzavi A., Gordaninejad F.: A threedimensional shape memory alloy/elastomer actuator. Composites, Part B, 32(2001), 441–449.
  • [6] Likhachev A.A., Ulakko K.: Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in NI-Mn-Ga shape memory alloy. Physics Letters A 275(2000), 142–151.
  • [7] Bogdanov A.N., DeSimone A., Muller S., Rossler U.K.: Phenomenological theory of magnetic-field-induced strains in ferromagnetic shape memory materials. J. Magnetism and Magnetic Materials 261(2003), 204–209.
  • [8] Kuttel C., Stemmer A., Wei X.: Strain response of polypyrolle actuators induced by redox agents in solution. Sensors and Actuators B141(2009), 478–484.
  • [9] Otero T.F., Cortes M.T.: A sensing muscle. Sensors and Actuators B (2003), 152–156.
  • [10] Cianchetti M., Mattoli V., Mazzolai B., Laschi C., Dario P.: A new design methodology of electrostrictive actuators for bio-inspired robots. Sensors and Actuators B142(2009), 288–297.
  • [11] Lacour S.P., Wagner S., Prahlad H., Pelrine R.: High voltage photoconductive switches of amorphous silicon for electroactive polymer actuators. J. Non- Crystalline Solids (2004), 338–340, 736–739.
  • [12] Yoshida R., Sakata T., Tambata O., Yamaguchi T.: Design of novel biomimetic polymer gels with self-oscillating function. Science and Technology of Advanced Materials 3(2002), 95–102.
  • [13] Wallmersperger T., Kroplin B., Gulch R.W.: Coupled chemo-ele formulation for ionic polymer gels — numerical and experimental investigations. Mechanics of Materials 36(2004), 411–420.
  • [14] Shahinpoor M., Kim K.J.: Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensors and Actuators A96(2002), 125–132.
  • [15] Barramba J., Silva J., Costa Branco P.J.: Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators. Sensors and Actuators A140(2007), 232–238.
  • [16] Jeon J.H., Oh I.K.: Selective growth of platinum electrodes for MDOF IPMC actuators. Thin Solid Films 517(2009), 5288–5292.
  • [17] Moschou E.A., Madou M.J., Bachas L.G., Daunert S.: Voltage-switchable artificial muscles actuating at near neutral pH. Sensors and Actuators B115(2006), 379–383.
  • [18] Ismail Y.A. et al.: Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sensors and Actuators B129(2008), 834–840.
  • [19] Bassil M., Davenas J., El Tahchi M.: Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle system. Sensors and Actuators B134(2008), 496–501.
  • [20] Mao L., et al.: Structure and character of artificial muscle model constructed from fibrous hydrogel. Current Applied Physics 5(2005), 426–428.
  • [21] Shenoy D.K. et al.: Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors and Actuators A95(2002), 184–188.
  • [22] Nam J.D., Choi H.R., Tak Y.S., Kim K.J.: Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles: Sensors and Actuators A105(2003), 83–90.
  • [23] Takemura K., Yajima F., Yokota S., Edamura K.: Integration of micro artificial muscle cells using electro-conjugate fluid. Sensors and Actuators A144(2008), 348–353.
  • [24] Takemura K., Yokota S., Edamura K.: Development and control of micro artificial muscle cell using electro-conjugate fluid. Sensors and Actuators A133(2007), 493–499.
  • [25] Kaczmarek J.: Multiscale modelling in mechanics of materials. Bulletin of the Institute od Fluid-Flow Machinery 514/1473/2000, Gdańsk 2000 (in Polish).
  • [26] Kaczmarek J.: A method of integration of molecular dynamics and continuum mechanics for solids. TASK Quaterly 6(2002), 2, 253–271.
  • [27] Kaczmarek J.: A model of the free energy for materials which undergo martensitic phase transformations with shuffles. Int. J. Engng Sci. 32(1994), 2, 369–384.
  • [28] Kaczmarek J.: A thermodynamical description of the martensitic transformation. A model with small volume of averaging. Arch. Mech. 50(1998), 1, 53–81.
  • [29] Kaczmarek J.: A nanoscale model of crystal plasticity. Int. J. Plasticity 19(2003), 1585–1603.
  • [30] Kaczmarek J.: A nanoscale model of the transformation-induced plasticity. Trans. Institute of Fluid-Flow Machinery 108(2001), 5–32.
  • [31] Kaczmarek J., Ostachowicz W.: A description of damage based on nanoscale modelling of fracture. Key Engineering Mat. 293-294(2005), 235–244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0039-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.