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Abstract
Materials undergoing deformation based on various mechanisms are frequently applied to manu-
facturing of artificial muscle actuators. In this paper we introduce a methodological step towards
more precise determination of investigation object related to such actuators. One defines a de-
formable cell and a deformable tissue in order to indicate which functions of such objects should
be integrated for further applications. One accentuates role of nanoscale models of mechanics
of materials as important on way towards design of the deformable cells.
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1 Introduction

In last years we observe a tendency to transition of engineering to smaller and
smaller scales in comparison with traditional large scale constructions like engines
and so on. This is manifested by increasing role of physics, chemistry, material
sciences and mathematics for engineering. In particular, ability to carry out com-
plex numerical simulations leads to automatization of the design process. Above
concise discussion generates the next question: where should we go with devel-
opment of engineering. The natural answer suggests a tendency to more precise
design. It means just creation of better physical foundations for equations of me-
chanics applied in engineering as well as transition to smaller scale with design of
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constructions. Nowadays, an outstanding manifestation of this tendency is pro-
motion of nanotechnology.

An interesting area where decreasing of scale in design takes place is robotics.
In particular problems related to motion of robotic systems and their control with
finer precision with respect to forces and dynamics are important. Power source
and power transmission during motion generation is of key importance. This is
related especially to precise dynamics as well as forces induced by such a dynamics
in environment.

In order to solve above problems one investigates for instance artificial mus-
cles. They are constructed on many ways using shape memory alloys, contractile
polymers, ionic-polymer metal composites and many other materials. The term
“artificial muscle cell” is introduced in order to accentuate analogy with biological
mechanisms of motion which is characterized just by fine controlling and sensitiv-
ity. One expects that by mimicking biological systems of motion we obtain robots
which would have similar properties.

In order to introduce a methodology of investigations in the field of design
of finer system of motion which would be able to imitate biological motion we
should define some elementary concepts. The term “artificial muscle cell” is such
an elementary concept. This term is well understood with respect to intention.

Usually one considers a deformable element composed of a material which has
a controlling parameter. Relations between forces and deformation are predom-
inantly investigated for such systems. However, whole problem of application of
deformable element and its integration with a structure ensuring its functionality
is not so carefully investigated. Consequently, in order to carry out theoretical
descriptions of controlled deformable systems as well as well directed to this end
experiments, we should define a unit corresponding to artificial muscles more pre-
cisely for further investigations. We should elucidate what we expect from such
a type of cell.

The term “artificial muscle cell” is closely related to biology. In practice, in
application of controlled deformable elements, we are not sure whether applica-
tions will always similar to muscles. Therefore, this name should be more abstract
and directly associated with the function of the cell. The term "deformable cell"
is more general and also more abstract. Class of such cells can be perhaps too
large. We could consider for instance a piston engine as a deformable cell. How-
ever this is not rather our intention. Therefore, the deformable cell, which is
in a perspective seen as rather small object, should be responsible for a simple
motion as possible. Such a motion is easier for controlling. Then, more complex
motions would be associated with a system of deformable cells which we call the
deformable tissue.

In this paper we introduce a methodological step which consists in defining
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deformable cell as well as a tissue of deformable cells in order to enable sys-
tematization of both theoretical and experimental investigations in this area. In
particular one accentuates importance of nanoscale mechanics for description and
design of such systems.

2 Characterization of deformable element of the cell

Deformable elements can be produced by various methods and materials. In this
section we try to express properties of the a deformable cell which are the most
characteristic. We assume in general that the deformable cell contains several
subsystems which will be discussed in what follows. However, the main subsystem
is associated with deformation.

Let us assume that motion of the deformable subsystem is characterized by
a set of generalized coordinates q = {qi} and forces f = {fi}. We can introduce
a reference configuration determined by Q and displacements defined as u = q−Q
representing a finite set of degree of freedom. We introduce the term body for
our deformable subsystem.

Let us consider the manifold Mu which is a set of all admissible displacements
of our body. Let us introduce also a submanifold MR ⊂ Mu of all displacements
describing rigid motion of the whole body.

We introduce an equivalence relation ≈R in Mu. Then, two displacements
u, u′ are equivalent if they differ only by a rigid motion of the whole body. The
manifold Mu can be expressed as a fiber manifold considered as a generalized
Cartesian product in the following form

Mu = MD ×f MR , (1)

where ×f stands for a symbol of generalized Cartesian product operation, MD is
a fiber chosen for instance for 0 element of MR. Elements of the manifold MD

are called deformation of our body. Such a manifold can be identified also with
the quotient space given by

MD = Mu/ ≈R . (2)

Extensive discussion of deformation can be found in [1] for instance.
We express motion of our body by the equation

Ψi({ufj}, U) + Iüi = fi , (3)

where uf = {ufj} ∈ MD, üi is the second order time derivative of ui, Ψi rep-
resents internal force in the body corresponding to i-th degree of freedom and I
represents inertia characteristics in a generalized sense.
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The function Ψi represents constitutive equations for material of deformable
element. Such constitutive equations can have a variable which is interpreted as
a control parameter. Let us mention temperature as a possible control parameter
for shape memory alloys for instance. In general, we can admit that Ψi depends
also on a set of internal state variables.

We have admitted that the force Ψi depends on a controlling parameter U .
Consequently, the Eq. (3) should be supplemented by an equation describing
evolution of controlling parameter

U̇ = AU (U,χ, η) , (4)

where χ represents an impulse for activation of a controlling system which gener-
ates U and U̇ is a time derivative of U . Then, the system of variables η describes
evolution of the controlling system. Such variables are introduced formally here
in order to accentuate the fact that controlling system is a subsystem with its
own properties.

We assume that the controlling parameter changes in a monotonic way U ∈
[Ua, Ub] within an interval. Let P(uf ) be a dominant property of our deformation.
We postulate that P(uf )(U) also changes in a monotonic way which expresses our
intention that the deformable cell realizes a simple motion. The property P can
express the elongation of deformable element for instance.

Summarizing, above description of motion of deformable cell is assumed as a
simplified to the possible degree in order to express function of this element only.
However, description of the whole physical phenomena in this element can be very
complicated.

3 Subsystems of the deformable cell

Deformable cell contains a deformable element denoted here by SD which induces
deformation as the main function of the cell. However, our intention consists
in construction of such an elementary object which would be deformable and
additionally could be well controllable. We expect also that such elements can
be incorporated into a larger system called the deformable tissue which would
perform more advanced deformation and dynamics. Furthermore, the deformable
cell should be a unit having an integrity which is protected against destruction.

The condition that elements can be joined follows that a part of the cell
should be able to create joints. Consequently, we distinguish subsystem SJ which
is responsible for joining the deformable cell with other cells and also with other
objects which could cooperate with cells.

It is imaginable that the cell has its own power source or a system which fulfill
this task. Therefore we distinguish the subsystem SU which is responsible for
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powering control functions. We have introduced a general equation for evolution
of controlling parameter by (4).

Powering of the control needs a signal. The subsystem Sχ is responsible for
activity of the system SU .

The deformable cell can be destroyed by conditions which occur in an envi-
ronment. Therefore, we have to ensure functionality of the cell. To this end we
introduce the subsystem SENV .

In order to realize a feedback in controlling, especially more fine functions, it
would be useful to endow the cell with a sensory subsystem controlling for instance
a kind of stress or other parameters at small scale of single cell in comparison with
whole tissue. Therefore, we introduce the subsystem SSENS which should fulfill
such a function.

Summarizing, our deformable call can be expressed as union of subsystems

SDC = SD ∪ SJ ∪ SU ∪ Sχ ∪ SENV ∪ SSENS . (5)

Deformable cells considered as so integrated systems as discussed above are
rather not discussed in literature where main attention is devoted predominantly
to the system SD without integration of it with other functions. We encounter in
literature many approaches to manufacturing of artificial muscle actuators.

The longest history has a pneumatic artificial muscle actuator [2]. The essen-
tial problem with pneumatic actuators is the requirement for bulky power sources
apart from the actuator itself. This perhaps can be an obstacle for miniaturiza-
tion within such a concept and creation of a tissue of such a kind of cells.

Another example which we encounter in literature is related to shape memory
alloy actuators [3–5]. They have a great power density but the response time and
the heat generation could be a problem in practical applications. This point of
view represented in literature [23] suggests that shape memory alloys deformable
subsystems SD perhaps need just a miniaturization in order to improve dynamics
associated with the heat controlling system. Then, the controlling subsystem SU

which should control a heat efflux towards SD should be well defined within the
deformable cell.

Let us note that magnetic shape memory alloys can be attractive with respect
to method of controlling of deformation [6,7]. Perhaps, in such a case the system
SU could be easily integrated with SD.

There are many materials which are applied as deformable elements and are
based on larger molecules. Let us mention polypyrolle mechanical actuators.
Polypyrolle is a conducting polymer which can undergo a volume change during
electric stimuli. The deformation can also be induced by pH change, dopant ions
or redox agents [8, 9].

Electrostrictive actuators are also applied as actuators [10]. Let us note that
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high voltage photoinductive switches considered in [11] can be considered as an
example of integration of SU with SD.

Polymer gels are soft materials made of cross-linked three-dimensional poly-
mer network containing solvent. Their ability to swell and deswell can be applied
to making actuators [12]. Ionic polymer gels are also applied to this end [13].
In particular hydrogels are very important materials for discussed here applica-
tions [17–20].

Ionic polymer-metal composites (IPMC) are applied to various actuators in-
cluding linear artificial muscle actuator using electric stimuli [14–16]. In particular
we can observe appearing of tendency to produce something like SENV which con-
sists in encapsulation [15] of part of working material on order to protect it against
environment.

Deformable elements as actuators are also made of liquid crystal elastomers
[21], and polymer nanocomposite materials (PNC) [22] considered within the cat-
egory of electrostrictive materials.

We encounter in literature also a concept of application of electro-conjugate
fluid for constructing deformable elements. Within this approach one discusses
a concept of artificial muscle cell which is the most close to our concept of de-
formable cell. In papers [23, 24] one discusses also joints between cells and larger
systems of such cells. The system SU is represented by pair of electrodes which
induce efflux of electro-conjugate fluid which in turn induces a deformation of the
cell.

Within the papers [23,24] we do not encounter any attempts to defining of the
deformable cell on a general level. Above discussed papers show that introduced
here concept of deformable cells can be useful.

Summarizing, we encounter in literature investigations which give evidence
that subsystems distinguished within deformable cells are important. In particu-
lar we observe in literature some approaches which are associated with integration
of subsystems with various functions. However, further development of such ele-
ments depends on taking into account of all aspects necessary for their application
including cooperation of all subsystems.

4 Tissue of deformable cells

Let us consider a system of deformable cells {SDCλ}, λ ∈ ΛDC . Deformable cells
indexed by means of λ need not to be identical. We assume that they are joined
by means of subsystems SJλ which are corresponding parts of SDCλ. We assume
that subsystems SJλ are responsible for transfer of forces between deformable
cells.

Let us assume that a part of SJλ denoted by SJλδ is responsible for joining of
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two deformable cells indexed by λ and δ correspondingly. We assume that this
fact is expressed by the relation

fIλn = Hλδ({fIδm}) , (6)

where fIλn, fIδm are forces assigned to n-th degree of freedom and m-th degree of
freedom within description of λ-th and δ-th deformable cell correspondingly. The
mapping Hλδ expresses structure of joining. In general we can admit to impose
some constitutive equations on the mapping Hλδ.

Whole motion of the deformable tissue can be now described by the following
equations

Ψλi({ufλj}, Uλ) + Iλüλi = Fλi , (7)

where F = {Fλi} = f + fI . In this case f represents some external system of
forces but fI are calculated by means of the relation (6) and üλi is second order
time derivative of uλi. Equations given by (7) should be supplemented by the
evolution equations

U̇λ = AUλ(Uλ, χλ, ηλ) , (8)

where U̇ is a time derivative of U .
In the last equations we have assumed that subsystems SUλ are independent

for each λ ∈ ΛDC . The term "evolution equation" is introduced as similar to
evolution equation for internal variables considered in constitutive equations in
mechanics of materials. We accentuate by this a similarity with mechanics of
materials. However, in this case we have to do with a composite with nonuniform
structure. Then, precise theory of structure of this kind should be developed
gradually by specification of details of the composite.

Having at our disposal whole tissue we can interpret role of subsystems Sχ and
SSENS of the deformable cell. The subsystem Sχλ is responsible for generation
of an impulse for activation of the subsystem SUλ. In case of whole tissue we can
distinguish a superior over the tissue system SN which can govern impulses {χλ}.
Then, subsystems {SSENSλ} provide to SN a sensory information by means of
variables rSENSλ related to states of deformable cells. Action of the system SN

can be expressed symbolically by

χλ = Nλ({χµ} {rSENSν}) . (9)

The supervising system SN can apply neural networks for instance, for governing
of action of deformable tissue.
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5 Discussion of necessity of modelling of deformable
cells with the aid of nanoscale and multiscale me-
chanics

We would say that an idea of the deformable cell which expresses tendency to
imitation of muscles is rather simple and well understood intuitively. We can
consider relatively simple design criteria associated with the degree of freedom
of deformable element with a simple shape composed of a deformable material.
However, when we will introduce more advanced requirements, for instance for
dynamics of such a structure, then problems of design of such deformable cell can
undergo complications. In particular, muscles which are prototype of this idea
are extremely complicated when they are considered as a construction. This is so
since they satisfy many design criteria related to various scales.

Muscles considered in large scale realize relatively simple function of genera-
tion of contractile force and simple deformation. However, at smaller scale, they
are highly controllable by chemical reactions. Furthermore, the mechanism of
contraction is rather complicated. It rests on synchronized deformation of myosin
heads attached to actine which induces sliding of actine fiber with respect to
myosin. This, in turn, reflects the design criterion which states that the muscle
generates force during contraction. However, when myosin heads are detached
from actine the force vanishes but the deformation remains the same. Elongation
of the muscle can be induced by an external force. By this we obtain the effect
that our hand remains in the position corresponding to moment when muscles are
switched off.

Our discussion is aimed at giving the evidence that we have to do with a
serious problem considering the deformable cell. At this moment we are not able
to solve directly so advanced problems as those related to complexity of muscles.
We should elaborate rather a strategy which would allow us to approach gradually
to making better and better deformable cells.

In the first step we should explain how we could express design criteria. They
can be related to various subsystems of the deformable cell and also to various
scales.

We assume that such a strategy consists in developing of a multiscale descrip-
tion within mechanics of materials. Such a description called the collection of
dynamical systems with dimensional reduction was introduced in several papers.
Let us mention [25,26] for instance. Within such multiscale description nanoscale
models are distinguished. This is so since nanoscale approach allows us to model
many important mechanisms responsible for inelastic deformation. It enables also
cooperation of various models with molecular dynamics in a unified manner. All
these facts are essential to defining various, multiscale criteria for design. In par-
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ticular, relation to designed structure is closer when we consider smaller scale.
We do not discuss in detail the whole concept of such a multiscale modelling.

We introduce here some general framework in order to accentuate role of various
scales.

Let us introduce a dynamical system purposed to description of phenomena
on the most elementary level called the elementary dynamical system (EDS) given
in a general form

ϕ̇ = L(ϕ, f) . (10)

We introduce a space of solutions VT = {ϕ(t) : t ∈ T} and also space of forces
FT = {f(t), t ∈ T} associated with the Eq. (10) and related to a time interval T .

Let us introduce the operator L : VT → FT constructed with the help of
Eq. (10) as L(ϕ) = L̃(ϕ, ϕ̇), where L̃ is obtained from equivalent to (10) equa-
tion in the form L̃(ϕ, ϕ̇) = f .

Let us introduce also V̄T = {d(t) : t ∈ T} and F̄T = {f̄ (t), t ∈ T} which
are spaces of processes on more averaged level and by this related to larger scale
than that one in (10) and also processes associated with forces corresponding to
this averaged level of description.

Relation between the two scales are established by mappings πT : VT → V̄T

and also πfT : FT → F̄T . Let us consider a diagram

VT
�LT FT

� �

V̄T
�L̄T F̄T

πT πfT (11)

Accordingly, the initially introduced equation LT (ϕ(t)) = f(t) induces, owing
to assumed πT and πfT , a dimensionally reduced equation

L̄T (d(t)) = f̄ , (12)

where L̄T = πfT ◦ LT ◦ π−1
T and the symbol "◦" stands for composition of map-

pings. The operator L̄T can be determined with the help of solutions of equation
(10) and postulated mappings πT , πfT for each value of d(t). In general, such
operator is postulated as a skeletal dynamical system SDS (C) as depending on
some constants C. They can be identified by means of solutions of EDS. In par-
ticular EDS can be related to molecular dynamics and SDS (C) can be related
to a continuum theory with finite-dimensional fields. We do not discuss precisely
methods of this identification. They are considered in [25, 26] for instance.

Let us assume that ϕ represents variables related to behavior of a material
in a small scale. Then, the operator LT is determined by means of balance of
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mass and energy equations and also by corresponding constitutive equations. In
particular it depends on form of the free energy.

The free energy Ψ reflects structure of material. Therefore, this function
should take part in the process of design of structures. Let us consider a system
of design criteria in relation to a given larger scale by conditions

DM (d(t), f̄ , L̄T (Ψ̄)) → inf (13)

and
DS(d(t), f̄ , L̄T (Ψ̄)) ∈ DB , (14)

where DM is a functional which we try to minimize and DS is a functional which
should have bounds imposed by a set DB . Functionals DM and DS represent
properties taken into account during the design process. The symbol inf denotes
the lowest value of the functional which is attainable. Consequently, we see the
design process as a kind of optimization problem with imposed constraints.

The variables of functionals DM and DS can be expressed by means of map-
pings πT and πfT and interpretation of (5) in the following form

{d(t), f̄ , L̄T (Ψ̄)} = {πT ({ϕ}), πfT ({f}), πfT ◦ LT (Ψ) ◦ π−1
T } . (15)

When we substitute (15) into (13) and (14) then we obtain a variety of structures
represented among others by the smaller scale free energy Ψ which fulfill criteria
(13) and (14). In particular, we can minimize (13) to a larger degree having at
our disposal a variety of structures corresponding to the smaller scale than those
corresponding to the more averaged level.

Let us discuss an example. Let us consider a cubicoid fixed at one end, com-
posed of a shape memory alloy. Then, considering it on a large scale level we can
describe its behavior by one generalized coordinate namely a displacement of its
end. Then, the internal force Ψi in (3) will reflect a behavior of the shape memory
alloy with a hysteresis. Let us admit control of such an element by means of an
external heat source. In such a case propagation of heat will be rather slow and
change of shape should be also slow.

Let us assume a functional DM = TD which represents a time of the defor-
mation between assumed extremal points under a heat flux. We tend towards
minimizing this time. Then, efficient supply of heat is of key importance. At
larger scale we have a small number of options in order to improve such a heat
input. With decreasing of scale we can distinguish more elements and construct
more efficient devices.

Within various structures represented by {πfT ◦LT (Ψ)◦π−1
T } we can construct

a composite of small wires, for instance, with small parts of external with respect
to each wire heat source. Whole system of smaller heat sources is integrated
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and is represented by SU . Thinner elements of SMA have smaller hysteresis and
change more easily temperature. Then, the functional TD can be more minimized
considering smaller scale models.

At this moment we encounter the problem of integration of some subsystems
of the deformable cell. Some new problems appear when we consider discussed
above composite. Integration of subsystems SD and SU in such a distributed
form needs some additional design criteria related to forms of interactions between
distributed subsystems. Thereby, some additional criteria such as (13) and (14)
should appear and should be determined for the smaller scale.

Above discussion is aimed at suggesting that the problem of design of de-
formed cell will have increased complexity together with tendency to improving
its performance.

Additional criteria related to smaller scale needs smaller scale models. Let us
note that nanoscale models of martensitic transformation [27, 28], plasticity [29],
transformation induced plasticity [30] and fracture [31] are formulated having in
mind their role in multiscale approach considered above as collection of dynamical
systems with dimensional reduction [25]. Whole system of this kind of modelling
could be applied in description of deformable cells in relation to various levels of
description of their details.

Let us note that investigation of deformable cells in sense described in this
paper is related mainly to material sciences. Material sciences are dominated by
experimental investigations. Fuel cells are good example, where material sciences
down to nanoscale level. However, design of such structures depends mainly on
experience of investigators. More precise design needs better theoretical models.

Summarizing, our discussion on multiscale and nanoscale modelling in relation
to deformable cells suggests the necessity of further development of these models
in order to realize a parallel system of investigation based on both aspects such as
theory and experiment. This should, in perspective, improve methods of design
of deformable cells.

6 Final remarks

Materials undergoing deformation controlled by various mechanisms and external
interactions are frequently applied to manufacturing artificial muscle actuators.
Such a possibility is well understood especially when we have intention to mimic
muscles or other biological motions. However, efficient application of such mate-
rials need more precisely defined conditions in which deformable elements should
work.

In this paper we try to give a methodological step towards systemizing various
efforts aimed at constructing systems which realize motion similar to that one
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provided by muscles. We have defined deformable cell. The first property of such
a cell is to realize a simple motion induced by a control parameter. The second
property consists in fact that we should consider the deformable cell as a union
of subsystems realizing controlling functions as well as ensuring resistance of the
cell against damage by external interactions.

Tendency to improving dynamics suggests that deformable cells should be
rather miniaturized. This in turn provides a new challenge. All subsystems of the
deformable cell should be integrated in small scale which will be probably a task
for nanotechnology.

Such a point of view follows in turn increasing role of theoretical descriptions
related to nanoscale. By this paper we find motivation for developing of nanoscale
models within mechanics of materials viewed as a potential partner for cooperation
with experimental investigations.

Received 1 March 2011
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