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Abstract
Until recently it was believed that Navier’s boundary condition could be given as a rigorous
foundation for slip phenomena. Due to the latest measurements in the mass flow rate of a gas
flowing through nano- and microchannels, several discrepancies in the mathematical modelling
have been found. Thus, in the literature, the opinion persists for the Navier slip condition
to be correct only under certain circumstances, particularly those restricted to the first order
boundary conditions. One of many ways to eliminate this discrepancy, which is extensively
employed in the contemporary literature, is to develop a variety of the so-called second order
boundary conditions. This path, however, seems incorrect since it lacks consistency between the
bulk stress tensor and its boundary representation.

In the paper we propose to replace the classical Navier slip condition with the new, more
general Navier-Stokes slip boundary condition. Instead of the usual method of consideration,
the boundary condition is presented as following from the mass and momentum balances within
a thin, shell-like moving layer. Owing to this, the problem of consistency between the internal
and external friction in a viscous fluid is solved within the framework of new layer balances,
and a proper form of constitutive relations for friction and mobility forces. Finally, the common
features of the Navier, Stokes, Maxwell and Reynolds concepts of a boundary slip layer are
compared and revalorized. The classifications of different mobility mechanisms, important for
flows in nano-, microchannels are also discussed.
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1 Background of mathematical modeling

Flows through nano- and microchannels have recently gained increased atten-
tion, both because of the strive for fundamental knowledge and due to its signif-

∗Corresponding author. E-mail address: janusz.badur@imp.gda.pl



4 J. Badur, M. Karcz, M. Lemanski and L. Nastałek

icant applicational array in chemical devices, energy converters, micro: -sensors,
-acutators, -reactors, just to name a few [33]. There exists a wide spectrum of
micro-electro-mechanical systems (MEMS) like electrostatic comb micro drives
[20, 30] or electrostatically side-driven micromotors [21, 23]. The phenomena of
external friction between two continuum phases is the physical reason for the con-
ventional macroscopic approaches to fail at small scales. Thus, the best known
no-slip boundary condition between a fluid and solid phase, which is the funda-
mental notion in the standard fluid mechanics, must not be applied when the scale
of the flow problem is changed significantly. Strictly speaking, the no-slip bound-
ary condition is valid only in the case of thermodynamic equilibrium between a
fluid flow and an adjacent solid surface. To provide this, speaking in the tone of
statistical mechanics, very high rate of collisions of fluid molecules into the solid
surface needs to occur. However, in the case of the small-scale flow system, the
rate of collisions is insufficient to ensure the condition of thermodynamic equil-
librium; a certain amount of tangential velocity should be allowed. Indeed, there
exist numerous physical causes of the slip over the solid surface, which are: molec-
ular slip, small dipole moment of polar liquids, trapping the naturally present gas
bubbles at the solid surface (see [33, 36]). The slip velocity may not be arbitrary,
and must obey the laws of external friction between three-dimensional continua
possessing a material surface.

According to the Newton hypothesis ([47], book II, p. 676), the external fric-
tion between bodies depends chiefly on three mechanisms: a) pressure within the
contacting layer; b) relative velocity of the bodies in contact; c) square of the
relative velocity, today known as the relative kinetic energy. Two kinds of the
external friction were proposed by Leonhard Euler [17]: one “static”, which is pre-
dominant at low relative velocities, and the other “dynamic”, that dominates in
the fully developed flow. This line of reasoning appears in the present literature
and is more commonly known as the “rate dependent slip” [71, 50]. The concept
of the “external friction” between laminas of different bodies, and the “internal
friction” between laminas of one body, has been introduced by Coulomb, who
conducted the first repeatable experiment that allowed him for verification of his
own laws of friction [9].

To satisfy the history, it was Navier in 1822, who proposed to use both: the
idea of the dissipative kinetic energy of the external friction (see Eq. (68) below),
and the idea of external friction force between fluid A and the surface of a fixed
body B, which he defined to be: fAB = νv. He called the coefficient of the ex-
ternal friction, ν, “la résistance provenant du glissement” – the external viscosity
[46]. The tangential component of the fluid velocity v on the surface he named
the “slip velocity”. The magnitude of the slip velocity is influenced by the value of
the external friction coefficient: if ν → ∞, then there is no-slip condition; if ν = 0
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the slip condition is ideal, which corresponds to the Euler model of internally
perfect fluid.

In special applications, as is the case for micro- and nanofluidic devices, when
the surface-to-volume ratio is large, the velocity slip occurs naturally, and the
“slip hydrodynamic boundary condition” is usually employed. Regardless of the
physical mechanism responsible for the slip, the magnitude of the slip may be
quantitatively described by the “slip length”, ls, or a dimensionless slip number,
Na (Navier number):

ls =
µ

ν
, Na =

ls
L

, (1)

being the ratio of the internal viscosity of the fluid, µ, and the external viscosity,
ν, and where L is a characteristic dimension of a channel (say, hydraulic diame-
ter). The coefficient ν always depends on both the fluid and the solid in contact
with it. In 1876, Butcher geometrically interpreted the slip length as the distance
extending into the solid wall, where the extrapolated velocity profile vanishes (see
Fig. 3) [7]. The mass flow rate, due to the presence of the velocity slip, increases.
According to Butcher’s interpretationm, the slip length is the local equivalent dis-
tance below the solid surface at which the no-slip boundary condition is satisfied,
if the flow field was hypothetically extended linearly outside the physical domain.

For the sake of consistency, let the history of the measurement be briefly
recalled, where the external viscosity coefficient, ν, sometimes called the “external
friction coefficient” was investigated. If the linear (Newtonian) shear viscosity of
a fluid, µ, is known, then the problem of measuring ν may be reduced to the
determination of the slip length. The first technical closure for ν of water over
glass has been proposed by Navier in the form varied with water density [46]:

ν = ρ × 0.0023 (2)

and was rigorously verified by Helmholtz and von Piotrowski (see [29]). The first
closure on external friction of a rarefied air over a glass was determined by Kundt
and Warburg in the form [37, 38]:

ls =
µ

ν
= 0.7122l = 0.7122l0

760
p

[mm] , (3)

where l, l0 are the mean-free-paths of a molecule under actual and atmospheric
pressure, respectively. The first systematic experimental study reporting the ex-
ternal viscosity for liquids and gases has been made by Wiedemann, who also
invented technical devices allowing for measurement of ν and ls [66]. In 1890
Whetham made several other systematic and critical experimental studies [67].
Many years after, Schnell in 1956, measured the flow rate of water in glass cap-
illaries with a radius of the order of 100 µm [54]. Trying to control the exter-
nal friction by any “interfacial lubrication”, Schnell treated the capillaries with
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dimethyldichlorosilane, making its surface a hydrophobic one. Then larger flow
rates have been obtained and they were interpreted as a lowering of friction and
extension of the slip length at the wall. Schnell’s slip length data are consis-
tent with the analytical solution of Navier that predicts the enhancement of the
mass flow rate within the capillary tube. Historically, many of the pioneering
investigations of non-continuum flows were conducted by researchers in the rar-
efied gas community who were primarily interested in low-pressure applications
[14, 15, 16, 45, 34, 35, 27, 63, 22].

Contemporarily, the modeling of the Navier number (or the dimensionless
slip length) is separated into two branches. The first, and predominant one,
deals with modeling of the external friction for different gases on solid surfaces.
Mathematical formulae on the Navier number and the dimensionless slip length,
trying to be in agreement with the experimental measurements, are the crucial
point of many wall-slip models of varying complexity. As usual, the main problem
is: how many adjustable parameters ought to be proposed, and which of those
parameters are truly predictive [62, 69]. Let us recall that the first closure for
the Navier number was proposed by Maxwell in terms of dimensionless mean free
path of molecules (nowadays the Knudsen number Kn) to be

Na =
(

2 − f

f

)
Kn , (4)

where f is the tangential momentum accommodation coefficient (TMAC) [44].
It depends strongly on the kind of gas and solid surface. Independently from
the peculiarity of the definition of the Knudsen number, the Maxwell closure
(4) expresses the inverse proportionality of the external friction on gas pressure,
that was found earlier by Helmholtz and von Piotrowski, and also by Kundt and
Warburg. The coefficient f has been determined for manifold materials by fitting
the experimental data to the simulation results. These data are presented by
Karniadakis et al. in a complete report [33].

Beskok and Karniadakis proposed a model of a two-parametrical dimensionless
slip length, that strongly depends on rarefaction and pressure [3]. This closure is
claimed to be rather successful in correlating the experimental data:

Na =
(

2 − f

f

)
Kn

1 − bKn
. (5)

The additional constant b is coming from the analysis of the generalized slip layer
model [11, 39], and should be experimentally fitted. An extension of Beskok and
Karniadakis’s model to a different range of the Knudsen number, and presence
of a constant acceleration gradient in the boundary layer – consistent with the
Reynolds acceleration gradient [53] – has been proposed by To et. al. in the



Foundations of the Navier-Stokes boundary conditions in fluid mechanics 7

form [62]:

Na =
(

2 − f

f

)
Kn

[
β

Kn
Re

+ 1
]

, (6)

where for a helium and cooper pair two slip coefficients are: f = 0.71, β = 0.76
and Re is a dimensionless inverse of the gas shear viscosity. Here, a fruitful analogy
in behavior of the Reynolds and the Navier number appears.

Second branch of application for the Navier number deals with flows of liq-
uids. Here fundamental properties related to the turbulent slip length have been
discovered in the original paper by Thompson and Trojan on shear flow of simple
liquids [61]. They found that the slip length is quite independent from the rate
of deformation γ̇ = dxy. But after crossing the characteristic value, say γ̇c, it was
observed that it increases nonlinearly with the shear rate. They have proposed
the following closure for dimensionless slip length:

Na = Na0

[
1 − γ̇

γ̇c

]−0.5

, (7)

where Na0 is a classical rate-independent Navier number and γ̇c = 0.093τ−1 is
a limiting value of the deformation rate, where τ is the characteristic time calcu-
lated from the Lennard-Jones potential. A gradual transition in rate dependence
of the slip length, from linear to highly nonlinear, firstly observed numerically via
molecular dynamics (MD) simulation in the Poiseuille flows, has been discovered
experimentally by Zhu and Granick for water flow against a methyl-terminated
self-assembled monolayer (SAM) [71]. De Gennes et al. proposed, that the rate
dependency of the external friction can occur due to formation on the surfaces of
some additional structures like the nucleation of vapor bubbles [10]. When the
surface nucleation barrier is exceeded at some inception point, the bubbles grow
and cover the surface, and the liquid flow is over a thin gas film rather than over
the solid surface itself1. On the other hand, this gradual transition in rate depen-
dency of the slip length, from linear to highly nonlinear, is observed also upon
reducing the strength of wall-fluid interactions when in a liquid/solid interface
layer some incommensurable vortex structures are formed [50]. Then, after the
transition from laminar to layer turbulence, enhancement of the external friction
may be observed in a manner proposed by Thomson and Trojan:

Naturb = Nalam
(
1 + τ2IId

)β
, (8)

where IId is the second invariant of the surface deformation rate ds, τ is an inter-
mittency time and β ≈ −0.5 [61]. In analogy to the fluid flow in the bulk, on the

1Other physical mechanisms which can govern velocity slip are discussed in the papers by
Zhang and Yarin [70] and Sinha Ray at al. [57].
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surface some transition from laminar to turbulent motion should be postulated,
and now not the critical Reynolds number Recrit, but rather a critical Navier
number Nacrit plays the main role.

Various values of the slip length and the methods of their determination have
been applied [69, 41, 43, 42, 40, 3]. Fitting the experimental results, with the
theoretical results based on slip models, it is often necessary to postulate various
dependences of the slip coefficient on the Knudsen number, and the geometry
of a considered channel. A number of these slip coefficients are summarized in
[33, 36, 20].

It should be noted that the external friction between surfaces of immiscible
liquids is more difficult to measure than the internal one. Therefore we usually
say that the true slip of velocity occurs only at the liquid/solid interface, whereas
an apparent slip occurs at a liquid/gas interface. Von Rybczyński indicated an
importance of the external friction coefficient between bubbles of air and wa-
ter, [63]. Of special interest in nanotechnology is the corresponding reduction in
drag, which can be achieved by partial substitution of a liquid/solid contact area
(small-slip) with a liquid/gas contact area (finite-slip). It is important especially
for biomedical and chemical engineering applications, for instance, in microfilters.

Now a question arises: where is the main scientific issue? Leaders of nan-
otechnology agree that mathematical modeling of reactive, diffusive, turbulent
flows within nanoscale systems, where the surface-to-volume ratio is very high,
and the characteristic dimensions are comparable with the length of the molecular
free path, should be quite new. When devices are scaled down, the surface-to-
volume ratio increases dramatically, and the surface related phenomena become
increasingly dominant. Therefore a precise modeling of surface properties of fluid
become much more important as opposed to the modeling of bulk properties.
Such a situation leads to the radical change of our interest. Instead of mathemat-
ical models that concentrate merely on the complexity of phenomena within the
bulk (far away from the wall), we now develop models that are simple (or even
extremely simple) in the bulk, but are apparently “rich” in governing unknown
fields prescribed in the boundary layer.

In the MEMS literature [21, 23], it is assumed that the external friction be-
tween solid and liquid surface, cannot be further neglected. It involves the velocity
slip, which is now important not only in the surface momentum transfer, but also
in surface mass, heat transfer, and reactive processes coupled with an interfacial
transport. Transport phenomena, which undergo within a thin shell-like domain,
require much more complex, surface like mechanisms of interchanging mass, mo-
mentum and entropy. There are also other types of layers as opposed to Navier’s
or Stokes’s mechanical one. One of them is the von Smoluchowski thermal layer
important for describing the temperature slip [33, 36, 28, 31]. In a nano-heat-
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exchanger it is a basic issue to find the proper value of dimensionless thermal
slip length (the Nusselt number), usually as a function of other dimensionless
surface parameters like the Navier, Sherwood, Levis, Weber numbers, and the
bulk numbers like the Euler, Reynolds, Prandtl, Peclet, Schmidt, etc. It is well
known that the mechanical properties of a fluid layer at small scales can overlap
the thermal, diffusive, absorptive properties of a thin but of finite thickness layer.
The problem of the general statement of interrelation between the slip velocity
layer, temperature slip layer, concentration slip layer, radiation slip layer, electric
potential slip layer, and others, in this paper, due to lack of space, is omitted.

In this article we study a consistency of the Navier-Stokes model for the fluid
in the bulk of a flow domain as well as in the boundary layer. Our subject of inves-
tigation coming from the fact that the classical fluid dynamics is usually identified
with the three-dimensional Navier-Stokes equations in bulk, and with the no-slip
boundary conditions. However, studying more precisely both pioneering papers
[46, 59], one would find that there exist also some additional developments for
the slip-boundary layer, which were initially made by Navier and Stokes. Unfor-
tunately, these concepts were overlooked in most literature. Therefore, according
to this scientific truth the Navier-Stokes equations are found in the bulk as well
as in the boundary slip layer.

Yet another problem needs to be explained. Since Navier’s contribution to
the modeling of viscous flow is usually defined as the incompressible viscous fluid
model, then the Navier slip boundary conditions are treated to be restricted only
to the incompressible Navier-Stokes equations. Quite a different approach to the
problem of consistency for bulk equations and their boundary conditions has been
presented in the monograph [33]. It was recognized that the slip boundary con-
dition should be used only in conjunction with the compressible Navier-Stokes
equations. It means that the combination of Navier slip boundary conditions
and the “incompressible Navier-Stokes” equations, which is often used because of
convenience, is theoretically inconsistent. In our article, we explain this problem
in detail. Generally, one can say that the incompressible Navier bulk equations
are consistent with the Navier boundary slip layer concept, and the “compressible
Stokes” bulk equations are consistent with the Stokes boundary layer model.

In this article we distinguish Stokes’ generalization of the Navier boundary
slip layer, since it is assumed the contribution of Stokes is far more significant in
the boundary modeling than in the bulk. Strictly speaking, a great step in the
development of fluid bulk modeling was proposed in the seminal Cauchy paper in
1827 — it was a beneficial replacement for Navier’s equations of a fluid motion in
the bulk with an equation of motion expressed in terms of a fluid “nonspherical
pressure diade”. This diade nowadays is called “the Cauchy stress tensor” or “the
momentum flux diade”. An important achievement of Stokes was quite similar.
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In 1845, he reorganized the Navier boundary model in terms of the Cauchy stress
tensor, using additionally the Cauchy concept of a “surface traction force”. The
above justifies the introduction of a new notion — the Navier-Stokes boundary
layer.

Our paper is devoted to studying some extension of the concept for the Stokes
boundary slip layer. At this stage of understanding in the mathematical model-
ing for interfacial nanoproperties of fluids, we have restricted our interest only to
Stokes’ boundary layer, treating it to be the “momentum layer” that accompanies
the mass and momentum balance in the bulk of fluid. Therefore, we discuss only
the mass boundary layer which is an external boundary condition for the balance
of mass. Our another paper suggests for the possibility of an extension on Stokes’
concept of a boundary layer onto the thermal energy, entropy, chemical affinity,
etc. [2].

This paper is organized as follows. In the next section, we describe details
of kinematics of the middle surface of the layer. The balances of the layer mass
and momentum are introduced in Sections 3 and 4. Constitutive relations for the
quantities of layer are briefly summarized in Section 5. Details of Navier, Stokes,
Maxwell, Reynolds slip layer are presented in Sections 6–9, respectively. Classi-
fication of a different mobility mechanism is presented in Section 10. Since the
surface mobility forces are linear, like driving forces in 3D irreversible Onsager-like
mechanics, then a surface coupling phenomena should be observed. The summary
and conclusions are given in the last section.

2 Moving shell-like region in a fluid continuum

We assume that the Navier-Stokes boundary slip layer (denoted as M+M−) can
be treated as thin domain moving in a space with a given migration velocity w.
This shell-like domain divides the continuum into a continuum A – that is a fluid
under consideration, and a continuum B which can be a free surface, solid body
or second fluid, as in Fig. 1. If both A and B are fluids then the Navier-Stokes
boundary layer represents the moving interfacial region, where physical properties
change in a radical manner. For instance in a thin transition layer between liquid
and vapor, the change of density is so noticeable, that it looks like a jump over
the layer thickness. Therefore, we assume that in the layer we observe so-called
“apparent” material properties, quite different than in bulk continuum A and B.
Thus we define an excess of layer density ρs [kgm−2], the particle velocity in the
layer vs [ms−1], an excess of layer momentum density ρsvs, and a surface excess
of momentum flux ps [1].

In general, this layer moves with the migration velocity w that differs from
material velocity vA in continuum A, velocity vB in continuum B, and velocity vs
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in M+M−. In particular case, the velocity w denotes the rate of changing a phase
transition surface within the fluid being at rest [12, 56]. Usually, the component
wn normal to the moving middle surface M, differs from normal components of
vA, vB and vs. It practically means that there is also a mass transport across
the layer. Indeed, the geometrical velocity field is not a priori known, and can
be determined from a special evolution equation [55]. If w = vs then the moving
layer is material, if w = vsIs + wnn the surface is semi-coherent (Fig. 1).

Figure 1. Outline of the Navier-Stokes boundary layer.

Navier and Stokes have intentionally assumed, that the layer density is equal to
zero ρs ≡ 0. Now, we want to determine the slip velocity vs from an independent
balance of the layer momentum. In special cases however, it simplifies to the
well-known balance of the boundary traction forces. For immiscible liquids being
in contact, the tangential components vsIs can be approximately described to be
1
2 (vA + vB) Is. Quite similarly, only a special case is ρs = 1

2 (ρA + ρB) h , where
h is a finite thickness of the layer2.

We introduce an original concept of an “excess of momentum flux” within the
Navier-Stokes layer, which is mathematically represented by the surface symmet-
rical diade ps. It governs the momentum transport within the layer, and therefore
it has a tangential and normal components. We postulate the surface momentum
flux in a following form:

ps (ξ) = pαβaα ⊗ aβ + pnαn⊗ aα + pαnaα ⊗ n + pnnn ⊗ n , (9)

2We are based here on a general surface kinematics elaborated by [49, 51]. The general form
of the surface balances of mass, momentum, angular momentum, energy, entropy, etc. is given
by [72, 58, 8, 12].
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where ξα (α = 1, 2) are local surface curvilinear coordinates on M, and aα, n
(α = 1, 2) are the base vectors on the middle surface of the layer M. Since the
physical properties of the layer are unknown a priori, they depend on the resulting
apparent properties in both continua A and B. For example, elastic recoverable
properties of ps depend on an actual shape of the surface M. Many authors pos-
tulate that, due to strong induced elasticity of the fluid layer, it changes from the
elastic fluid (only recoverable spherical deformations) into an elastic fluid with re-
coverable shape deformations [69]. Similarly, owing to induced strong anisotropy,
the internal viscosity of the fluid layer can be described by four apparent viscosity
coefficients [24].

Let us now recall a few mathematical relations required for establishing of
the balance of the layer mass and momentum. At first the Weatherburn surface
fundamental diades can be introduced [65]:

Is = I − n ⊗ n = gradsxs = aαβaα ⊗ aβ , (10)

IIs = −gradsn = bαβaα ⊗ aβ , (11)

which are called the first and second fundamental forms of the surface M. As far
as the surface gradient acts also on the coordinate dependent base aα, n, then
the surface gradient of velocity is calculated to be

gradsvs = (vαaα + vnn) ⊗∇βaβ =

=
(
vα|β − vnbαβ

)
aα ⊗ aβ + (vαbαβ + vn,β)n⊗ aβ ,

(12)

and the surface divergence of velocity vector is based on the contraction C1,2:

divsvs = C1,2gradsvs =
(
vα|β − vnbαβ

)
aαβ =

= vα|α − vnbα
α = divs

(
vs‖

) − vnIb .
(13)

where the invariants of the second fundamental form of the curvature diade are:
Ib = trIIs = bα

α = b1
1 + b2

2 =
(

1
r1

+ 1
r2

)
, IIb = detIIs = det (bαβ). In anal-

ogy to the three-dimensional case, the rate of surface deformation is defined as
a symmetric part of the surface gradient of velocity [60]:

ds =
1
2

(
gradsvs + gradT

s vs

)
=

=
[
1
2

(
vα|β + vβ|α

) − vnbαβ

]
aα ⊗ aβ +

1
2

(vαbαβ + vn,β)
(
n⊗ aβ + aβ ⊗ n

)
.

(14)

The first invariant of ds is in analogy to 3D:

Ids = trds = C1,2ds = vα|α − vnIb . (15)
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Similarly, the surface gradient of the flux of momentum is

gradsps = ps ⊗ (∇γaγ) = pαβ
|γaα ⊗ aβ ⊗ aγ + pαβbαγn ⊗ aβ ⊗ aγ+

+ pαβbβγaα ⊗ n ⊗ aγ + pnα
|γ (n⊗ aα ⊗ aγ + aα ⊗ n⊗ aγ) +

+
(
2pnαbαγ + pnn

|γ
)
n ⊗ n ⊗ aγ − pnαbε

γ (aε ⊗ aα ⊗ aγ + aα ⊗ aε ⊗ aγ) +

− pnnbε
γ (aε ⊗ n ⊗ aγ + n ⊗ aε ⊗ aγ) ,

(16)

and its divergence

divsps = C2,3gradsps =
(
pαβ

|β − pnβbα
β − Ibpαn

)
aα+

+
(
pαβbαβ + pnα

|α − Ibpnn
)
n .

(17)

Now it is useful to recall the following identities
(
dt = d

dt

∣∣
X=const ; ∂t = ∂

∂t

∣∣
x=const ;

∂n = ∂
∂n

)
. We can write the Reynolds transport theorem for mass in continuum

A with the moving subsurface S+ ⊂ M+:

dt

∫
A

ρAdv =
∫

A
∂tρAdv +

∫
∂A

ρAvA · nAds +
∫

S+

ρAw · n+ds , (18)

which after using of 3D Green-Ostrogradski theorem:∫
A

div (ρAvA) dv =
∫

∂A
ρAvA · nAds +

∫
S+

ρAvA · n+ds , (19)

takes the following form

dt

∫
A

ρAdv =
∫

A
[∂tρA + div (ρAvA)] dv +

∫
S+

ρA (w − vA) · n+ds . (20)

The Slattery transport theorem for the surface mass [72, 58]:

dt

∫
S

ρsds =
∫

S
(∂tρs − Ibwnρs) ds +

∫
∂S

ρsvs‖ · nldl +
∫

l
ρsw‖ · nldl , (21)

together with 2D Green-Ostrogradski identity:∫
S

div
(
ρsvs‖

)
ds =

∫
∂S

ρsvs‖ · nldl +
∫

l
ρsvs‖ · nldl , (22)

takes the form

dt

∫
S

ρsds =
∫

S

[
∂tρs + div

(
ρsvs‖

) − Ibwnρs

]
ds +

∫
l
ρs

(
w‖ − vs‖

) · nldl , (23)
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where w‖ = wIs and vs‖ = vIs are tangential velocities.
Repeating that reasoning for the momentum vector, in a quite similar way, we

can obtain the Reynolds transport theorem for momentum in continuum A with
the moving surface S+:

dt

∫
A

ρAvAdv =
∫

A
∂t (ρAvA) dv+

∫
∂A

ρAvA ⊗ vA · nAds+
∫

S+

ρAvA ⊗ w · n+ds=

=
∫

A

[
∂t (ρAvA)+div (ρAvA ⊗ vA)

]
dv+

∫
S+

ρAvA ⊗ (w−vA) · n+ds ,

(24)

and the Slattery transport theorem for the surface momentum3 [72, 58]:

dt

∫
S

ρsvsds =
∫

S
[∂t (ρsvs) − ρsvswnIb] ds+

+
∫

∂S
ρsvs ⊗ vs‖ · nldl +

∫
l
ρsvs ⊗ w‖ · nldl ,

(25)

or

dt

∫
S

ρsvsds =
∫

S

[
∂t (ρsvs) + divs

(
ρsvs ⊗ vs‖

) − ρsvswnIb
]
ds+

+
∫

l
ρsvs ⊗

(
w‖ − vs‖

) · nldl .

(26)

The infinitesimal domain is quite different for 3D balance and for a layer
balance. In a case of usual 3D balance it is sufficient to assume the infinitesimal
Euler-Cauchy cube dv = dxdydz. However in a layer, we cut out a part of layer
with an infinitesimal volume dv = hdS+ × dS−, that is usually called a “pillbox”.
According to the Fried-Gurtin rule of the pillbox balance [18], we distinguish the
integration over the surfaces S+ and S− from an integration over da ∼= dhdl
surface with nl (h) ≈ nl (see Fig. 2)4.

Looking for a Green-like transformation for this curved surface, and bearing
in mind that ps has the form (9), we obtain

∫
l

[∫
h
ps (h, l) nl (l) dh

]
dl ∼=

∫
l

[∫ h+

h−
ps (h, l)nl (l)

]
dl =

=
∫

l
psnldl =

∫
S

[divsps + (∂npsn)] ds .

(27)

3Petryk and Mróz have discovered yet more general form of time derivative which appears
in (26) [49].

4The precise integration with the lifting tensors fields along normal coordinates has been
elaborated in [12].
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Figure 2. A pillbox domain of the Navier-Stokes layer balances.

It means that the normal change of ps deals only with the outer surface compo-
nents:

ps = psIs + (psn) ⊗ n . (28)

3 Mass balance in the Navier-Stokes layer

Mass of the Navier-Stokes layer in any case cannot be taken to be constant –
its rate of changing is so large that cannot be omitted. Such phenomena as
drainage, wetting, dewetting, adherence, surface nucleation, catalytic reactions,
lubrication, frequently appear in the nature and technology. Therefore we decided
to add an additional governing equation, namely a balance of surface mass, in
the mathematical model of a generalized Navier-Stokes boundary slip layer. We
assumed that sources of mass are the bulk fluid continuum A and the body B, or
the material line L that bounds the surface M, and then the mass balance of the
whole system is
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dt

[∫
A

ρAdv +
∫

B
ρBdv +

∫
S

ρsds

]
+

+
∫

S+

ṁAds +
∫

S−
ṁBds +

∫
S

ṁsds +
∫

l
ṁldl = 0 ,

(29)

where ṁA, ṁB are mass influxes [kg s−1m−2] that come from the continua A and B
through the surface S+ and S− respectively, and ṁl is a mass outflux [kg s−1m−1].
We can separate the system onto three sub-systems divided by surfaces S+ and
S− such that

dt

∫
A

ρAdv +
∫

S+

ṁAds = 0 in A ∪M+ , (30)

dt

∫
B

ρBdv +
∫

S−
ṁBds = 0 in B ∪M− , (31)

dt

∫
S

ρsds +
∫

S
ṁsds +

∫
l
ṁldl = 0 on M∪L . (32)

Balancing only the mass crossing surfaces S+ and S− we have a restriction∫
S+

ṁAds +
∫

S−
ṁBds +

∫
S

ṁsds = 0 . (33)

Small differences between S+, S− and S can be omitted and therefore we can
write

ṁA + ṁB + ṁs = 0 . (34)

The layer mass has a source ṁs = − (ṁA + ṁB) that is equal to contribution
coming from A and B. Using the Reynolds and Slattery transport theorems
(18)–(23) we can obtain from (29) that∫

A
[∂tρA + div (ρAvA)] dv +

∫
B

[∂tρB + div (ρBvB)] dv+

+
∫

S+

[
ṁA + ρA (w− vA) · n+

]
ds +

∫
S−

[
ṁB + ρB (w− vB) · n−]

ds+

+
∫

S

[
∂tρs + divs

(
ρsvs‖

) − wnρsIb + ṁs

]
ds +

∫
l

[
ṁl + ρs

(
w‖ − vs‖

)] · ndl = 0 .

(35)

The set of equations presented above describes precisely the layer mass balance
in the system under consideration. These equations locally read to be

∂tρ + div (ρv) = 0 for A∪ B , (36)
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∂tρs + divs

(
ρsvs‖

) − wnρsIb = ṁA + ṁB on M . (37)

From the balance on the surfaces S+, S− and an open part of boundary line, we
additionally obtain an accompanying definitions of mass fluxes:

ṁA = −ρA (w− vA) · n+ on M+ , (38)

ṁB = −ρB (w− vB) · n− on M− , (39)

ṁs = −ρs

(
w‖ − vs‖

) · nl on L . (40)

4 Balance of momentum of the Navier-Stokes layer

An idea of common treatment of the external friction phenomena as a true New-
tonian “vis impressa”, that appears in the continuum mechanics for the first time,
can now take part in the balance of momentum, is a great novelty of the Navier-
Stokes layer. Therefore, postulated by Navier the friction forces fSA and fSB on
the surfaces S+ and S− respectively, explicitly appear in the balance of system
forces. It seems to be a crucial point of our reasoning. Both forces fSA and fSB

depend on material properties of fluids A, B and on apparent, operative proper-
ties of the considered layer M+M−. If the system contains two continua A, B
and the “pillbox” of the Navier-Stokes layer bounded by material line L then the
condition of a conservation of the total momentum can be written as

dt

[∫
A

ρAvAdv +
∫

B
ρBvBdv +

∫
S

ρsvsds

]
+

∫
A∪B

(ρA + ρB)bds +
∫

S
ρsbsds+

+
∫

S+

(pnA + ṙA) ds +
∫

S−
(pnB + ṙB) ds +

∫
∂A

pnAds +
∫

∂B
pnBds+

+
∫

S
(pS+ + pS− + ṙs) ds +

∫
l
(pnl − ṙl) +

∫
∂S

pnldl = 0 ,

(41)

where ṙA, ṙB and ṙs are the momentum carried with the mass fluxes ṁA, ṁB,
ṁs respectively. The traction forces on the contact surfaces are defined to be
pnA = pAn+ and pnB = pBn−. It means that these forces depend on the
stresses pA and pB in the bulk continua. Additionally, pS+ and pS− are two
contact forces which act on the layer side S+ and S−, respectively. There is also
the surface traction pnl = psnl, on the boundary of the Fried-Gurtin “pillbox”,
where nl is a normal vector to the surface element dhdl. Additional momentum
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ṙl is carried out from the system, if we have the surface mass outflow ṁl through
the line L. The forces b and bs are the conventional body forces.

Employing the physical relation that restricts momentum transport through
the surface M:∫

S+

ṙAds +
∫

S−
ṙBds +

∫
S
ṙsds =

∫
S

(ṙA + ṙB + ṙs) ds → ṙs = −ṙA − ṙB , (42)

and assuming that the contact forces are restricted by an internal equilibrium,
which is some continuum realization of the Newtonian law on “action and reac-
tion”, we obtain∫

S+

pnAds +
∫

S−
pnBds +

∫
S

(pS+ + pS−) ds = 0 . (43)

Assuming further that, not yet defined contact forces pS+ , pS− that depend on
the traction forces coming from the continua A, B and friction forces fSA and
fSB, we can write within the contact surfaces a following relation, according to
the law of “equality of action and reaction”:{

pnA + fSA = pS+

pnB + fSB = pS−
. (44)

Employing the above relations (42)–(44) and (24)–(26) we obtain∫
A

[
∂t (ρAvA) + div (ρAvA ⊗ vA) + divpA − ρAb

]
dv+

+
∫

B

[
∂t (ρBvB) + div (ρBvB ⊗ vB) + divpB − ρBb

]
dv+

+
∫

S

[
∂t (ρsvs) + divs

(
ρsvs ⊗ vs‖

) − wnρsvs + divsps + ∂n (psn) +

+ (pnA + pnB + fSA + fSB) − (ρsbs + ṙs)
]
ds+

+
∫

S+

[
ρAvA ⊗ (w − vA)n+ − ṙA

]
dS +

∫
S−

[
ρBvB ⊗ (w− vB)n− − ṙB

]
dS+

+
∫

l

[
ρsvs ⊗

(
w‖ − vs‖

)
nl − ṙl

]
dl = 0 .

(45)

The rate of momentum carried by the exchange of mass between subsystems is
described by three last integrals. Using further (38)–(40) we get

ṙA = ṁAvA , ṙB = ṁBvB , (46)

ṙs = ṁsvs = ṁA (vA − vs) + ṁB (vB − vs) , (47)
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ṙl = ṁlvs . (48)

The local form of the momentum balance can be finally written as5

∂t (ρv) + div (ρv ⊗ v + p) = ρb for A ∪ B , (49)

∂t (ρsvs) + divs

(
ρsvs ⊗ vs‖

) − wnIbρsvs+

+ divsps + ∂n (psn) + [pAnA + pBnB + fSA + fSB] =
= ρsbs + ṁA (vA − vs) + ṁB (vB − vs) on M .

(50)

Repeating now the reasoning of d’Alembert and Euler, we can define a surface
d’Alembert-Euler acceleration vector to be

as =
ds

dt
vs = ∂tvs + (gradsvs)vs‖ . (51)

Employing the surface identity (22), instead of divergence of the convective flux
of surface momentum we obtain

ρsas = ∂t (ρsvs) + divs

(
ρsvs ⊗ vs‖

)
. (52)

The Navier-Stokes layer in generalized form is described now by the layer balances
of mass (37) and momentum (50). These are two additional nonlinear differential
equations for two additional fields of unknowns, i.e. the surface mass density
ρs and the layer slip velocity vs. These equations are both geometrically and
physically nonlinear, and should be solved using any discretization method –
finite element method (FEM), finite volume method (FVM) – under assumption
that the surface M possesses an independent from the bulk space discretization.
In the case when M− is a fixed solid surface, the migration velocity w = 0,
and then discretization mesh could be fixed in the marching time of numerical
solution. Apparently, if w 
= 0, then a moving, the self deforming mesh motion
should be resolved together with surface mass and surface momentum equations,
and the appropriate set of equations for bulk. There are different cases of using
the Navier-Stokes layer balances in the literature. For instance, when A and B
are ideal, nonviscous Euler fluids, and the surface density is equal to zero ρs = 0,
and the layer momentum flux is omitted ps = 0, then the surface mass and
momentum equations reduce to the generalized form of the Rankine-Hugoniot
jump conditions: {

ṁA = ṁB

ṁAvA + pAnA = ṁBvB + pBnB
, (53)

5An example how to define pB for the deformable wall is given in the paper by dell’Isola et
al. ([13], Eq.(40)). For a rigid wall stresses are taken to be zero: pB ≡ 0.
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where pA, pB are thermodynamic pressures in the Euler fluids A and B, respec-
tively. If, additionally w = 0, and there is an additional contribution to the
surface diade ps = γIs, then the layer momentum balance leads to the general-
ized Young-Laplace equation:

divs (γIs) + pAnA + pBnB =
[
γ

(
1
r1

+
1
r2

)
+ pA − pB

]
n = 0 . (54)

If an interfacial density is omitted i.e., ρs = 0, the difference between the external
friction forces fSA and fSB simply vanishes then, and a single layer friction force
exists:

fAB = fSA + fSB = ν (vA − vB) , (55)

where ν is an external viscosity coefficient. It is an exact form of an external
friction force proposed by Navier (vB = 0) and Stokes (vB = vwall). Assuming
that the continuum A is an incompressible viscous fluid: pA = pI− 2µd, and the
continuum B is a rigid, fixed solid body: pB = 0, vB = 0, we obtain the Navier
slip boundary condition:

fAB + pAnA = νvA + (pI− 2µd)n = 0 on M , (56)

where vs = vA|M is identified with the slip velocity.

5 Recoverable relations for surface momentum flux

The layer flux of momentum is responsible for recoverable capillary and viscous
transport: ps = ps

(c) + ps
(ν). The first most important part of the elastic recov-

erable diade p(c)
s , that is known as the capillarity diade, can be described by the

surface tension γ. This quantity was introduced to the process of mathematical
modeling by Young, Laplace and Poisson. The second contribution comes from
the recoverable stresses called the surface bending C1, C2, introduced by Gibbs.
There is also a layer “normal pressure” 	, introduced by Stokes. These altogether
lead to the following definition of the capillarity diade:

ps
(c) = 	n ⊗ n + γIs + CIIs, ∂n (psn) = 	n , (57)

where 2C = C1 +C2, and divsps
(c) = γIbn+C

(
I2b − 2IIb

)
n. A quite general form

of the capillarity diade has been proposed recently in [1] as

ps
(c) = γ0 − IIsγ1 + n ⊗ Isdivs (γ1 − IIsγ2) , (58)

where the surface capillary measures can be defined to be spherical

γ0 = γIs , γ1 = CIIs , γ2 = KIIIs . (59)
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These capillary measures are expressed in terms of the first, second and third
fundamental surface forms, and γ, C, K are the surface tension, bending and
torque coefficients, respectively. If we suppose however, that the surface tension
γ is a surface dependent quantity, as for example in [4]:

γ = σ (ρs − ρs0) , (60)

where σ is a constant tension, and ρs0 is an equilibrium-like surface density, then
we have: divs (γIs) = (gradsγ) Is + γdivsbfIs. From gradsγ 
= 0 it follows that
the Marangoni ripples and other capillary effects can additionally be described,
[24]. Additionally, if the rate of change of ρs is givean as the result of mass flow
rate coming from the fluid A:

ṁA = ρAvA · nA = τ−1 (ρs − ρs0) , (61)

where τ is the Bilicki-Kestin relaxation time [4], and employing the surface mass
balance (37): divs (ρsvs) = −τ−1 (ρs − ρs0), we can find the tangential compo-
nents of surface velocity vs. It could be done by using of a simplified, steady-state
form of the momentum balance (50):

µIs

(
gradvA + gradTvA

)
n + divs (γIs) + ν (vA − vs) = ṁAvA , (62)

which in special cases can be solved analytically.
The viscous properties of the Navier-Stokes layer depend on the so-called

“apparent viscosity” which, in general, possesses a „transversal” anisotropy [24].
One can define the viscous surface stresses by using the surface diade of the rate
of deformation (14), and a normal change vn,n:

ps
(ν) = λ′ (trds) Is + λ′′vn,nn ⊗ n + 2µ′IsdsIs + 2µ′′ (ds − IsdsIs) . (63)

This diade does not undergo the classical 3D de Saint-Venant condition, saying
that the viscous stresses must be traceless. For a special case when λ′′ = µ′′ = 0,
this constitutive relation leads to that proposed by Boussinesq (1913) [5, 56]:

ps
(ν) =

(
λ′ − µ′) (trds) Is + 2µ′IsdsIs . (64)

The formula for surface viscosity coefficients λ′, µ′ needs extended investigations.
Both coefficients have nothing in common with the internal viscosity µ of fluid
A. It should be underlined that another contributions for ps, that come from
additional surface fields, like the chemical potential, phase transition parameter,
turbulent intermittency parameter, surface entropy and temperature, surface elec-
tric potential, etc., are also possible, however this issue needs more elaboration.

If the Navier-Stokes layer is formulated as a thin film of second phase, then a
serious increase of the slip length is observed. De Gennes et al. [10] have found
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that, if the film thickness is h and the shear interfacial viscosity is µ′, then the
slip length is determined to be

ls = h

(
µ

µ′ − 1
)

. (65)

6 Navier boundary layer

Let us now turn to Navier’s oryginal line of reasoning that, unlike our own, is
based on the argumentation elaborated by molecular dynamics. Let us recall
that the molecular dynamics approach is based on the precise equation of motion
for every molecule and less precise description of frictional interaction between
molecules, [48, 50]:

m(k)ẍ(k) + χ(k)ẋ(k) +
n∑

l �=k

∂V(k,l)

∂x(k)
= f(k) k = 1, ..., n . (66)

Usually, the elastic recoverable, interaction potential V(k,l) for the molecules (k)
and (l) is taken in MD as the pairwise Lennard-Jones potential with two con-
stants. Friction in the above model is described by the dumping coefficient χ(k).
The forces f(k), should be known, however sometimes are defined in a manner
consistent with the continuum approach – for instance, by the inlet and outlet
difference of pressure [36, 28]. On the solid boundary both the elastic potential
and the dumping coefficient should take into account a specific interaction with
hot boundary solid molecules.

On the other hand, molecular dynamics of Navier is a little different. Since it
is based on variational formulation. He proposes a quantity, which nowadays is
identified with the total energy of continuum:

0 =
�
V

dxdydz {δWext + δWrev + δWd’Alem + δWvisc} +
�

dsδWsepar , (67)

where particular elements of the total energy variation are6 expressed in terms of
virtual displacement δx = δvdt:

δWext = fbody · δx ,

δWrev = p

(
dδx

dx
+

dδy

dy
+

dδz

dz

)
= pdiv (δx) ,

δWd’Alem = ρa · δx ,

δWvisc = µ
[
(gradv) +

(
gradTv

)] · [δgradv] + µ [tr (gradv)] [trδ (gradv)] dt ,

δWsepar = νv · δvdt .
(68)

6See ([46], pp. 395, 412, 404, 411), respectively.
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Integrating by parts, in an analogy to Lagrange’s reasoning, Navier got not only
a local form of the equation of motion (nowadays identified with the momentum
balance) but also an adequate boundary conditions:

�
V

dxdydz

{
−fbody − div (−pI) + ρa− div

{
2µ

[
d +

1
3

(trd) I
]}}

· [δv] +

+
�

ds

[
−νv +

{
2ε

[
d +

1
3

(trd) I
]}

n
]
· δv = 0 ,

(69)

which are valid both for compressible and incompressible flows. Here, a =
∂tv + (grad v)v is the d’Alembert-Euler acceleration vector. Taking next the
incompressibility conditions trd = 0, Navier got the local equations of momen-
tum balance7:

fbody + div (−pI) = ρa − div (2µd) , (70)

and boundary conditions, nowadays called “the slip boundary conditions”8:

νv = 2µdn on M . (71)

Taking into account that fluid does not penetrate the wall i.e. v · n = 0, Navier
simplifies the above equations to the form:

νv = µ (gradv)n . (72)

Two independent viscosity coefficients appear in this celebrated equation. The
first one is an internal viscosity µ and the second one is an external viscosity ν (ε
and E in original Navier notation). Therefore, finishing his own derivations for
equations of motion of a viscous fluid, Navier adds comments on a dependency
for the coefficient ν on a type of wall material (cooper, glass). Next, trying
to compare the model of internally and externally viscous flow with Girard’s
experiments [46], Navier has prepared three analytical solutions for different flows
in pipes and open channels. In his solutions both coefficients µ and ν take part,
and what is important for the future definition of the length of slip ls, the ratio(
ls = µ

ν

)
frequently appears. However, a notion for flow enhancement could not be

7See ([46], p. 414). Here we touch a problem of consistency of denotations since we face the
letters ε, E (Navier) and µ, ν (Stokes) for the same internal viscosity and external viscosity,
respectively. We propose to accept Stokes’s denotation, since his contribution to the discovery of
the boundary layer slip is meaningful and motivated, not by MD, but also within the framework
of rational continuum mechanics.

8See ([46], p. 415). It should be underlined that this equation is not Galilean invariant.
It is true and problematic. Quite recently a consistent approach to two-dimensional surface
momentum balance which is Galilean invariant has been given by dell’Isola et al. [13].
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discovered by Navier, since the referential mass flow rate was discovered later by
Poiseuille in 1844. Indeed nowadays, taking Navier’s and Poiseuille’s solution into
consideration for the capillary pipe flow, we can easily find the flow enhancement
due to the presence of a slip:

enh =
ṁNavier

ṁPoiseuille
=

(
1 +

8ls
a

)
1(

1 + ls
2a

) , (73)

valid for arbitrary fluid and solid materials9. In the case of the slip length equal
to the pipe’s radius, ls = a, the flow enhancement is enh = 4/3.

7 Stokes boundary layer

Keeping in mind the problem of consistency between the models established within
the bulk and at the boundary, let us firstly recall the Newton second law of
dynamics proposed for a viscous fluid by Stokes (1845), and treated by him as
a continuum version of linear momentum balance. In the case of fluid motion,
a balance of the linear momentum is undergoing a vector density per unit of an
actual volume of fluid. Assume, for the sake of continuity, that the contact forces
between fluid molecules can be simply represented as the divergence of a flux
momentum tensor p:

fpressure + fvis︸ ︷︷ ︸
Navier

≡ div p︸ ︷︷ ︸
Stokes

, (74)

where, as opposed to Cauchy, Stokes defines the flux of momentum p, not as a
“tension” but as a “pression”. Stokes assumes this pressure diade as an additive
composition of the spherical pressure and the “tangential actions” as he thought
about viscous stresses. Such an assumption is fundamental for describing the
momentum transport within the continua of particles. The same assumption ap-
plied for the continua of long material filaments or small shells, cannot be further
correct and successful, since only in the continuum of particles the mechanism
for the transport of momentum can be correctly described by a tensor of second

9It is a strongly nonlinear formula which is able to describe the Knudsen paradox, [35, 22]. It
is a commonly observed fact that in all of these microdevices, we measure a serious enhancement
of mass flow rates in comparison to corresponding mass flow rates predicted by solution of the
classical Navier Stokes equations, or by the turbulent Navier-Stokes-Reynolds equations. From
the point of view of rational continuum mechanics, the anomalous mass flow rates through the
microchannels are of particular interest. Additionally to the flow enhancement anomaly, we
observe also a specific flow paradoxes. The most known one is the Knudsen paradox, where the
mass flow is strongly nonlinear and attains some minimum. Early studies on microchannel liquid
flow had already concluded that the theoretical predictions, using the Navier-Stokes equations
and no slip velocity at the wall as boundary condition, led to underestimation of the mass flow
rates [33].
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order. Therefore, when the laws of Newtonian mechanics were applied to the
substantial continuum of particles, the results were unclear and irrational. Left
side of (74), known as Euler’s reasoning, was well known to Stokes, as to be the
only available way to postulate these fundamental laws of Nature. Even today
one can find in the literature similar kind of argumentation: “if formula (74) is
always true, the notion of stress tensor is unnecessary”. Up to now, there is no
other possibility. Everyone who wants to state the momentum balance, from the
very beginning, should go back to the Euler elementary parallelepiped and should
draw the balance of internal and external forces to be

fpressure + fbody + fd’Alem + fvis = 0 . (75)

It is not necessary to go deep into details in order to see that Stokes repeats
precisely the Euler argumentation. He postulated to consider an infinitesimal
fluid particle E = ∆x∆y∆z, taken in the form a rectangular parallelepiped. The
following set of “impressa forces” appears in this infinitesimal volume:

• d’Alembert’s inertia force:

fd’Alem = ρa ∆x∆y∆z ,

• the body force:
fbody = −ρb ∆x∆y∆z ,

• the neighborhood force:

fpressure + fvis = divp ∆x∆y∆z .

According to the Euler postulate, these forces, after a simple adding to themselves,
and dividing by the infinitesimal volume, lead to the most celebrated local balance
of momentum in the so-called Euler description:

ρ (a− b) + divp = 0 . (76)

Here the specific density of the body force is b, and ρ is the fluid density. Now,
adopting the d’Alembert-Euler definition of the acceleration vector a, and using
over-dot, instead of Stokes’ denotation D

Dt for the material time derivative, we
obtain

a = v̇ = ∂tv + (gradv)v , (77)

what means that the acceleration of a fluid particle is the nonlinear function of
velocity. Further, substituting for (76) Stokes’s constitutive definition for the
pressure diade:

p = pI − 2µ (d − δI) − 3κδI = pI − 2µd +
(

2
3
µ − κ

)
IdI , (78)
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where the dilatational change of volume is described by 3δ = Id = tr (d). Sup-
posing the bulk viscosity κ = 0; and the internal friction coefficient µ to be
homogeneous, i.e. constant in space, we have

ρ (v̇ − b) + gradp − µ
[
lapv + div

(
gradTv

)]
+

2
3
µgradId = 0 , (79)

where lap = div (grad) or within the Cartesian coordinates, [69]:

ρ (v̇ − b) + gradp − µlapv − µ

3
gradId = 0 . (80)

The equations in the form (80) are usually called the “Navier-Stokes equa-
tions”. These equations are geometrically nonlinear with respect to the definition
of the acceleration vector (77), and physically nonlinear with respect to the rela-
tion between pressure, density, temperature and entropy η – however this relation
has not been mentioned by Stokes explicitly.

With respect to the internal friction µ, these equations are linear, what is an
exact prolongation of the Newtonian one-dimensional case into a three-dimensional
one [47]. A simple type of nonlinearity with respect to the internal friction was
only postulated by Stokes, who assumed that the coefficient of viscosity, in gen-
eral, should be a function10:

µ = µ (p, θ, Id, IId, IIId) . (81)

In general, the phenomenon of internal friction between the adjacent layers of
fluid could depend on the normal components of stresses or pressure. The internal
friction is a phenomenon of interchange of momentum between fluid particles due
to the molecular motion of fluid layers. Independently from the mechanism of
friction proportional to a relative velocity for the contacting layer, it is worth to
consider a mode of friction depending on the normal internal force. According
to Coulomb, as the normal stresses increase the frictional resistance increases [9].
Therefore, Stokes clearly recognized that the shearing viscosity, being proportional
to relative velocity, is this mode of internal friction that could be considered
independent of pressure. He states:

10Development of this line of reasoning is presented in brilliant Truesdell’s paper [C. Truesdell,
A new definition of fluid, I. The Stokesian Fluid, Journ. de Math. 29 (1950), 215-243]. A one
most known example of this kind of constitutive relations for the shear viscosity is the shear-
thinning Carreau model of viscosity:

µ = µ0

[
1 + (αIId)2

] (N−1)
2 ,

where α, N are the relaxation time constant and power law-index, respectively [R.B. Bird, R.C.
Amstrong, O. Hassanger, Dynamics of polymer liquids, Wiley, NY, 1987].



Foundations of the Navier-Stokes boundary conditions in fluid mechanics 27

“[...] It has been concluded by Du Buat, from his experiments on the
motion of water in pipes and canals, that the total retardation of
velocity due to friction is not increased by increasing the pressure
I shall therefore suppose that for water, and by analogy for other
incompressible fluids, µ is independent of pressure. [...]”

We will now examine the problem of Stokes’ boundary slip layer concept. It is
well known that after Stokes’ proposition for a celebrated set of governing equa-
tions for the motion of fluid undergoing internal friction, he turned his attention
to the problem of external friction for fluid/solid and fluid/fluid interfaces. As-
suming Stokes’ reasoning, one can find that there was an unification – from one
side, the great researchers by Young, Laplace and Poisson concerning these condi-
tions, which should be fulfilled on a free surface i.e., the surface between water and
air, and from the other side, a concept of the slip boundary condition of Navier.
In order to do this, he proposed to take into consideration a distinguished thin
boundary layer, based on a middle surface M. In analogy to Cauchy’s infinitesi-
mal cube dV = dxdydz, Stokes proposes to make a balance of momentum in an
infinitesimal part of the layer that is bounded from the top via the infinitesimal
surface S+ and from the bottom via S− [see Fig.1].

He supposed that the fluid under consideration occupies the volume VA and
is bounded by a surface M+, which is oriented outside by a normal unit vector
nA = −n+. Thus, the surface M is a limitation of a material boundary layer – an
infinitesimal “pillbox” layer element, that allows for performing proper momentum
balance – that he termed M+M−. This layer has a very small but finite thickness
h. From the bottom, the layer is limited by a surface M− oriented by a normal
nB = −n−, which bounds a second arbitrary continuum (having a volume VB)
being in a contact with the fluid under consideration. A form of this arbitrary
contacting continuum Stokes takes to be: a solid, a surface of separation and
a free surface. Any momentum balances within the thin layer should be referred,
not to an infinitesimal cube, but to the infinitesimal layer “pillbox” bounded by
a small surface dS+ from the top and dS− from the bottom.

In the simplest case, when the thickness of the Stokes layer is going to zero,
and when the effect of the curvature of surfaces M+ and M− can be neglected,
then the force boundary condition, that comes from the Cauchy theorem11, is
reformed and equivalently described as a balance of momentum, expressed from
the point of view of a layer M+M−. Omitting now the inertia forces of the
matter in the layer, and its body forces, and any other internal forces like the

11Note that Cauchy theorem says that on the boundary of a body, through the classical
“tetrahedron argument”, a connection of the internal stresses p with the external traction f∂V

is: f∂V + pn = 0. For a body for which a boundary surface is assumed as a layer, the Cauchy
theorem changes into: f∂V + divsps + pn = 0 (see [19]).
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surface elastic tension and the surface traction tensor, we can write a balance of
the layer momentum (50) as a simple sum of the external forces:

divsps + fAB + pAnA + pBnB − 	n = 0 . (82)

In practice, because surfaces M+ and M− are nearly parallel, we have to use
only one normal vector n = n+ = n−.

Let us take, firstly, as an illustration of acting of (82), the case of a free surface
and M− = M′. Physically, on this side (surface M′) the gas is located, and there
is usually a constant pressure pB = π′. Then the Cauchy traction force is

pBnB = −π′n . (83)

From the side of a fluid under consideration, the force acting on the surface M+,
according to Eq. (78) is equal:

pAnA = [pI − 2µ (d− δI) − 3κδI]n . (84)

Next, putting further simplification of no-slip conditions ps = fSA = fSB = 0, we
get a first simple boundary condition on a free surface between fluid and gas:(

π′ − p
)
n + 2µdn − 2µδn + 3κδn = 0 . (85)

This equation for an incompressible fluid under consideration 3δ = Id = 0 reduces
to (

π′ − p
)
n + 2µdn = 0 . (86)

Explicitly, for n = lex + mey + nez, this equation was written by Stokes to be12

l (π′ − p) + µ
{

2l du
dx + m

(
du
dy + dv

dx

)
+ n

(
du
dz + dw

dx

)}
= 0 ,

m (π′ − p) + µ
{
l
(

du
dy + dv

dx

)
+ 2mdv

dy + n
(

du
dz + dw

dx

)}
= 0 ,

n (π′ − p) + µ
{

l
(

du
dz + dw

dx

)
+ m

(
dv
dz + dw

dy

)
+ 2ndw

dz

}
= 0 .

(87)

This set of equations is not sufficient for describing a free surface motion. It should
be considered together with the condition of materiality of the free surface. The
condition of materiality of any surface, according to Lagrange, is described as
follows: if M = 0 is an equation of the free surface then Ṁ = 0 is needed for its
materiality13. If Ṁ = 0 is satisfied, then there is no generation or destruction of
particles of fluid at the free surface.

Now let us take into account an internal elasticity of the Stokes layer in the
form of the Young-Laplace surface capillarity tensor. Thus, the balance (82) takes

12See [59], Eq.(14).
13See [59], Eq.(15).
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an extended form, which is a composition of the Young-Laplace and the stress
boundary equations. If ps = γIs is the two-dimensional diade of surface tension
with a constant surface tension γ = const; and divsps = divs (γIs) = γtr (IIs)n,
where the mean curvature of M is trIIs = (1/r1 + 1/r2), we finally obtain instead
of Eq. (86): (

π′ − p − γtrIIs

)
n + 2µdn − 2µδn + 3κδn = 0 . (88)

This is the boundary condition for the free surface undergoing the surface tension.
For incompressible fluid δ = 0 and a normal component of Eq. (88) indeed reduces
to the ordinary Young-Laplace equation.

Let us consider a second case when the surface M− = M′ is a solid surface
which moves with the wall velocity vB = u′ex + v′ey + w′ez = vwall. Then,
according to the Cauchy theorem for traction force, we have a representation in
terms of boundary stresses as

f∂B =

{
f′∂M = P ′ex + Q′ey + R′ez : rigid body ,

p′n′ : deformable body .
(89)

In this moment, we can observe the crucial point of Stokes reasoning – it is
a definition of the external friction force fSA of layer that becomes a more complex
than Navier’s one. At first, let 	 be a normal pressure at the Stokes layer being
in contact with a solid, which would exist (especially close to M−), if there were
no motion of molecules in its neighborhood14. It means that a spherical pressure
tensor pI in the bulk, now in a layer, degenerates into an ellipsoid: γIs + 	n⊗n.

In order to understand a kind of external friction, let us consider, according
to Newton’s hypothesis, three basic mechanisms of the internal friction. We state
here a quite similar postulate: the Newton hypothesis is also substantial for the
external friction phenomena. Therefore, we postulate the following form of the
layer force:

fAB = fABN
vA − vwall

|vA − vwall| + ν (vA − vwall) + fκ (vA − vwall)
2 vA − vwall

|vA − vwall| (90)

which depends on the layer pressure 	, and three types of external friction forces.
The first one is related to a static friction coefficient fAB (like Coulomb linear
law of friction) between the fluid A and the material of layer M+M−, where N
is the pressure coming from the fluid under consideration:

N = |nA · pAnA| , (91)
14It is a reminiscence of the old discussion of Clermont, d’Alembert, J. Bernoulli and Euler

about the wall pressure in hydrostatics. Let us recall that the question is: How the bulk pressure
in static water differs from the pressure in the neighborhood of a solid wall? Yet more complex,
nonlocal pressure description one can find in Duhem’s proposal – see [14, 15, 16].
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and (vA − vwall) |vA − vwall|−1 is a unit vector in a direction of relative velocity (a
direction of the external friction force). The second one is an additional tangential
friction force on M+M− due to an external viscosity ν and the relative velocity
field between M+ and M−. The third term in Eq. (90) is due to square of relative
velocity. If the friction coefficients fAB and fκ in Eq. (90) become simultaneously
zero, then (90) has a form postulated by Stokes:

fAB = ν (vA − vwall) . (92)

The second external force coming form the fluid under consideration is given by
Eq. (89). If there is no other additional forces coming from the layer M+M−,
what means that the linear and angular momentum are going to zero (resulting
velocities in the layer are null), then, omitting capillary elastic forces of the layer,
from the balance (82) we obtain vA = uex + vey + wez:

(	 − p)n + ν (vA − vwall) + 2µdn − 2µδn + 3κδn = 0 . (93)

Explicitly, for κ = 0, this condition takes the following form15:

l (	 − p) + ν (u − u′) + µ
{

2l
(

du
dx − δ

)
+ m

(
du
dy + dv

dx

)
+ n

(
du
dz + dw

dx

)}
= 0 ,

m (	 − p) + ν (v − v′) + µ
{

l
(

du
dy + dv

dx

)
+ 2m

(
dv
dy − δ

)
+ n

(
du
dz + dw

dx

)}
= 0 ,

n (	 − p) + ν (w − w′) + µ
{
l
(

du
dz + dw

dx

)
+ m

(
dv
dz + dw

dy

)
+ 2n

(
dw
dz − δ

)}
= 0 .

(94)
Materiality of a contact surface M− is satisfied since it is the surface of solids.

It turns out that the friction force fAB could be known only after a solution
of the problem16, whereas in the case of a free surface this force is a given data.
On the other hand, the form of the solid surface M− is given, whereas the form
of the free surface is known only by the solution of the problem. Equation (94)
is a generalization of the Navier boundary conditions and contains two quite new
elements: the velocity of wall surface vwall and a new external layer pressure 	,
which in general differs from the internal fluid pressure17 p.

There remains to consider the third case of two fluids in a contact, having
a common surface given by M = 0. Fluid velocities are vA ≡ v (side M+)

15See [59],Eq.(17).
16Let us notice that it leads to a new kind on non-linearity connected with the boundary

conditions, i.e., the problem becomes a non-linear one, even if the equations in the bulk are
linear.

17Concerning the external viscosity coefficient, Stokes gives some supplementation of the
Navier’s data. He quoted Dubuat’s experiments that have found that when the mean veloc-
ity of water flowing through a pipe is less than circa one inch per second, the water near the
inner surface of the pipe is at rest. It is a case when the external viscosity goes to infinity
(ν → ∞), i.e. the slip length is going to zero.
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and vB ≡ v′ (side M−). In such case it is important to put the condition of
impermeability, saying that the normal velocities should be the same18:

v · n + v′ · n′ = 0 or l
(
u − u′) + m

(
v − v′

)
+ n

(
w − w′) = 0 . (95)

Let the interface layer M+M− between both fluids possesses a Navier-like friction
force, due to postulated an external viscosity, say νAB, which in general, differs
from the external viscosity between a fluid and a surface19. Then, in analogy to
the previous consideration, we have a following set of governing equations:

• A fundamental momentum balance in the layer (the vis viva and the cap-
illarity tensor of M+M− are omitted here) — under assumption of one
common friction force: fAB = fSA + fSB (see Eq. (55)):

fAB + pAnA + pBnB = 0 . (96)

• An external friction force within the layer:

fAB = νAB (vA − vB) . (97)

• Two external traction forces on the surfaces bounding the layer:

pAnA ≡ pn = [pI − 2µ (d − δI) − 3κδI]n , (98)

pBnB ≡ p′n′ =
[
p′I − 2µ′ (d′ − δ′I

) − 3κ′δ′I
]
n′ . (99)

If we suppose νAB → 0, as appears most probable, the problem significantly
simplifies. Nevertheless we are not sure under which circumstances the external
viscosity between two different fluids can be measured, and when its appearance
is essentially important20.

18[59], Eq.(18)).
19Coefficient νAB was introduced by von Rybczyński [63], who called it “slipping coefficient of

fluids”. Nowadays, the general theory of nonequilibrium mixture also takes into account velocity
slipping between the components (see: M. Cieszko, J. Kubik, Derivation of matching conditions
at the contact surface between fluid-saturated porous solid and bulk fluid, Transport in Porous
Media, 34, 319-336, 1999).

20This external viscosity coefficient should be important when gas bubbles flow up in liquid, or
when liquid droplets flow down in the rarefied air. This last case was a subject of consideration
of von Rybczyński, who was first author who calculated coefficient νSS′ between water and
air. He shown that for respectively slow motion of a water droplet the inner liquid remains the
spherical shape and its resistance force is [63]:

F = 6πµRc
νSS′R + 2µ

νSS′R + 3µ
, µ − viscosity of air.
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Finishing the reconstruction of the crucial concept of the Stokes boundary
layer, it should be mentioned in some important geometrical interpretation of slip
velocity condition. It was given by Butcher, who prepared the figure (see Fig. 3)
showing a profile of velocity field in a flow with the slip over a solid surface [7]. For
the Helmholtz-Piotrowski coefficient G (now ls; further discussion one may find in
Maxwell [44], Schnell [54], Whetham [67]) Butcher, for the first time in literature,
introduced an interpretation of slip length. From a geometrical interpretation, it
follows that the slip flow in a given channel is equivalent to a no-slip in a channel
with the increased dimension on the “slip length”. Thus the ratio of slip length
to a characteristic dimension of the canal is so important and is defined as the
dimensionless slip length or the Navier number21.

Figure 3. Definition of the slip length ls for a simple shear flow, according the Butcher concept
of equivalent flows. Reconstruction from [7].

21Butcher’s geometrical interpretation was widely accepted by English authors. For instance,
Maxwell has mentioned that [44]:

“[...] It, therefore, the gas at a finite distance from the surface is moving parallel
to the surface, the gas in contact with the surface will be sliding over it with the
finite velocity, and the motion of the gas will be nearly the same as if stratum of
depth had been removed from the solid and filled with the gas, there being now no
slipping between the new surface of the solid and the gas in contact with it [...]”

Butcher’s figure and interpretation has been repeated by Sir Horace Lamb [H. Lamb, A treatise
on the mathematical theory of the motion of fluids, Cambridge, 1879, edn. 8, (1938), Dover
Publ., 1961] who has quoted Maxwell formulae on the ratio of the mass flow rate in slipping
flow and no-slip flow in a straight circular pipe with the inner radius a as:

ṁslip

ṁno-slip
=

(
1 + 4

ls
a

)
.
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8 Maxwell boundary layer

It is important to make a deeper analysis of the Stokes model of a boundary layer.
Therefore, this section is devoted, inter alia, to discussing the most important
extension of Stokes’s concept worked out by Maxwell in 1879 [44]. Study of the
background for Maxwell’s slip velocity boundary conditions gives a quite new
perspective on the complexity of the problem. Regarding the problem of the
consistency between an internal model of continua (in bulk) and external model
of continua (its boundary), one can notice that it refers actually to the three basic
situations:

• The bulk model is much richer than its boundary model — it is a most fre-
quently used case in the continuum mechanics and rational thermodynam-
ics. In this case internal coefficients have important values whereas external
coefficients go to infinity, i.e., its characteristic length going to zero.

• Conversely, the internal coefficients are very small, and in the model dom-
inates its external property, which has a dominating influence on the ob-
served phenomena. It is exactly the case discussed here – it appears in the
Maxwell slip layer.

• The fully consistent model where every internal (bulk) coefficient of a model
has its counterpart in an external coefficient.

However, it is seldom noticed that the above three basic situations should
be always stated within the framework of the Stokes layer boundary mechanics,
because of its generality. In further explanation of the Maxwell model of a slip
layer, we stand on the position that Stokes’s reasoning is a superior to Maxwell’s
reasoning.

The discussed here Maxwell’s paper, entitled On stresses in rarefied gases
arising from inequalities of temperature [44], possesses two distinct parts, based
on two quite independent motivations. The first part of the paper, entitled “March
1878”, is motivated by an attempt to explain Crookes’ discovery of the rotation of
“windmill” in a partially evacuated radiometer22. Maxwell put a basic hypothesis
that, in Crookes’ experiments, since the pressure is very low, the new stresses are
growing due to a second gradient of temperature in rarefied gas. These stresses can
be capable of producing rapid motion in a radiometer windmill. In other words,
in a gaseous medium where there is only linear distribution of temperature, there
are no additional thermal stresses. A problem of boundary conditions in this first
part of paper [from March 1878] has not been considered.

22See W. Crookes, Philos. Trans. Roy. Soc. London 166, 325 (1876).
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But, in that time, Maxwell is conscious that this type of thermal stresses,
calculated for a hot solid sphere of uniform temperature and immersed in the
colder gas, cannot give rise to any force tending to move the sphere in one direction
rather than in another. In the framework of his model of stresses the sphere
placed within the finite portion of gas is already in equilibrium. How is it then
possible to account for the observed by Tyndall fact that an additional force acts
between solid bodies immersed in rarefied gases? This kind of motion, nowadays
called thermophoresis [6] is connected with small solid particles, typically spherical
(like volcanic ashes, dust, etc.), suspended in a fluid, within which an externally
imposed linear temperature difference (constant temperature gradient) induces
a force that moves the sphere from hotter to colder places, i.e., the particle moves
against the temperature gradient23.

In order to explain this, even in March 1878, Maxwell turns his attention not
to his own model of thermal stresses but to the slip phenomena discovered in
liquids by [29] and in rarefied gases by [37, 38]. The mechanical slip phenomenon
is related to the finite value of the Navier external viscosity and appears as a slid-
ing of a fluid in contact with the solid surface. Maxwell precisely underlines a
difficulty for mathematical treatment, since the gas close to the solid surface is
probably in quite a different “state of condensation”. It means that quite a differ-
ent model is needed for the description of the phenomena of sliding. One example
of this extraordinary situation, discovered by Kundt and Warburg, is the fact that
the velocity of gas sliding over the surface, induced by given tangential viscous
stresses, varies inversely with pressure.

In the first part (March 1878) of his celebrated paper, Maxwell does not at-
tempt to take into account the effect of this mechanical sliding motion, because
the main goal of his paper is devoted to the invention of a thermal stress model
in the bulk — the consideration of a kinetic relation close to the solid surface is
“completely destroying the simplicity of our first solution of the problem”.

Let us briefly recapitulate the Maxwell results concerning the additional stress
related to “inequalities of temperature”. These stresses can appear only when
the dispose temperature is nonlinear. From his formula, the pressure tensor is
reconstructed:

p = pI− 2µd +
2
3
µIdI + β1

1
2

(
gradg + gradTg

)
+ β2 (divg) I , (100)

where the temperature gradient is denoted as g = gradθ and β1, β2 are the
constitutive constants which can be called the thermal transpiration coefficients.
After substitution to the Stokes form of the balance of momentum (76):

ρ (v̇ − b) + divp = 0 , (101)
23See J. Tyndall, Proc. Roy. Inst. 6, 1, 1870; D.A. Edwards, H. Brenner, Interfacial Transport

Processes and Rheology, Butterworth-Heinemann, Boston 1991.
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and after using the tensorial identities gradg = gradTg = θ,ij ei ⊗ ej , and divd =
1
2 (lapv + gradId), we obtain an equation of a fluid motion that takes into account
the defined above unconventional contribution to the momentum transport:

ρv̇ + gradp − µlapv − 1
3
µgradId + β1lapg + β2grad(lapθ) = ρb . (102)

If Maxwell’s constitutive constants β1 and β2 are going to zero, the model
of fluid under consideration becomes identical with the Stokes model. Further
taking the following identities: divg = lapθ and lapg = lap(gradθ) = grad (lapθ)
we write (102) to be [44]:

ρv̇ + gradp − µlapv − 1
3
µgradId + (β1 + β2) grad (lapθ) = ρb . (103)

Here, according to the nonequilibrium kinetic treatment, Maxwell was able to
estimate the value of the thermal transpiration constants to be [44]:

β1 = 3
µ2

ρθ
; β2 =

3
2

µ2

ρθ
. (104)

These are really very small quantities that depend on viscosity, µ, density of
gas, ρ, and its temperature, θ. Let us note that more concise calculations of the
Maxwell fundamental equation, which includes also its nonlinear parts, lead to
the expression for stress tensor in thermal transpiration phenomena which also
depends on a linear distribution of temperature24:

p = pI − 2µd +
2
3
µIdI + β1

1
2

(
gradg + gradTg

)
+ β2 (divg) I + β3g ⊗ g . (105)

The boundary condition where the coefficient β3 and the first gradient of tem-
perature g appear, is fundamentally quite different from original Maxwell’s one,
since g appears within the friction force fSA — what means quite another physical
phenomena. It is also a historical truth that the presence of g in the boundary
layer was firstly postulated by Reynolds, and next proven by Maxwell.

Now, let us consider the second part of Maxwell paper, known as Appendix
May 1879 (few months before Maxwell’s death). The direct reason for writing of
this appendix was a great Reynolds discovery of thermal transpiration. Maxwell,
who was a reviewer of Reynolds seminal paper Thermal transpiration [52] has
an opportunity to study the principles of the Reynolds thermal transpiration at
the manuscript stage, before a formal publication. The thing of a great novelty
was Reynolds’ proposal of modeling of thermal transpiration, i.e., the motion of

24J. Badur, B.-H. Sun, Some remarks on the structure of evolution equations, Appl. Math.
Mech. 16, 747–757 (1995), Eq. (17).
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gas through the capillary thin tube form the colder to hotter ends, with linear
drop of temperature at the walls. Reynolds was able to predict the transport of
momentum as a one-dimensional steady-state momentum drift between the hot
and cold reservoirs, situated at opposite ends of the capillary, with the resulting
constant local temperature gradient in each point of the fluid being in isobaric
state. These conditions are quite opposite to the Maxwell bulk model of stresses,
Eq. (100), where only a linear distribution of temperature is present. Then,
the only possibility to explain Reynolds’ discovery was to look at the boundary
slip phenomena, where the boundary force, that depends on a thermal gradient,
must be postulated. This concept, proposed earlier in Reynolds’ manuscript, is a
subject of Maxwell’s celebrated appendix.

Unfortunately, if the thermal transpiration phenomenon was discovered en-
tirely by Reynolds, its explanation proposed by Maxwell, could not be published
earlier than the original Reynolds information. This personal mistake of Maxwell,
as well as a mistake of Philosophical Transaction editors, should be pointed out.
Such a situation, as an example of a non-ethic behaviour in science should be
criticized25.

Additionally, Maxwell has rejected a first proposal of description made by the
author of discovery, saying26:

“[...] It was not till after I had read Professor Reynolds’s paper that
I began to reconsider the surface condition of gas, so that what I have
done is simply to extend the surface phenomena the method is, in
some respects, better than that adopted by Professor Reynolds, while
I admit that his method is sufficient to establish the existence of the
phenomena, though not to afford an estimate of their amount. [...]”

Maxwell assumes, similarly to Reynolds, that the kinetic theory of gases in the
vicinity of a solid surface should be reformulated, and the governing equations
should include conditions which must be satisfied on a surface of the solid body.
Unfortunately, the solid body surface is absolutely rigid and stress-free state. Its
molecules are absolutely fixed what means that the surface temperature is close
to absolute zero. A difference in contact of two gases, for instance, hydrogen
and carbon dioxide with the same glass surface follows only from a number of
absorbed and reflected gas molecules. Maxwell prefers to treat the surface as
something intermediate between a perfectly reflecting and a perfectly absorbing

25Those were the last days in Maxwell’s life. Thus, when Stokes received the letter from
Reynolds describing this case, he did not undertake any action, and after Maxwell’s death the
problem achieved a different dimension and was no longer important for the young Reynolds.
The faith still favoured him and during the following 8 years he made 17 new discoveries (all of
them are available to see at an exhibition in the University of Manchester museum laboratory).

26Maxwell, [44], Appendix, p. 249.
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surface. Therefore, an experimentally verified portion f describes absorption of
all the incident molecules and the portion 1 − f describes the perfectly reflected
molecules.

Let suppose that the surface is a plane y, z and that the gas is flowing in that
side of it, for which x is positive. Next, let v be a main surface component of
velocity in the main y direction. The original Maxwell’s slip-velocity formula is
given by the following expression27:

ν − G

(
dv

dx
− 3

2
µ

ρθ

d2θ

dxdy

)
− 3

4
µ

ρθ

dθ

dy
= 0 , (106)

where µ – internal viscosity coefficient, ρ is the gas density, θ is an absolute
temperature and G is the Helmholtz-Piotrowski denotation for slip length ls. To
finish the process of reconstruction of Maxwell slip boundary condition (106), let
us write the boundary force condition in terms of the Navier-Stokes layer in a
general form (see: 7.23):

fAB + pAnA + pBnB = 0 , (107)

where:

• the fluid boundary force:

pAnA =
[
pI− 2µd +

2
3
µIdI + β1

1
2

(
gradg + gradTg

)
+ β2 (divg) I

]
n ,

(108)

• the rigid body surface boundary:

pBnB = 0 , (109)

• the surface friction force:

fAB = ν (v − vwall − cvθgradsθ) . (110)

The thermo-mobility coefficient cvθ should be formulated, according to Maxwell’s
formula (106), as a coefficient that is not dependent on the property of the solid
surface:

cvθ =
3
4

µ

ρθ
. (111)

27See [44], Appendix, Eq.(68).
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Using the definition ls ≡ G = µ/ν, and dividing the balance (107) by the exter-
nal viscosity, ν, we obtain a generalization of the Maxwell slip boundary layer
Eq. (106) as

v − vwall = cvθgradsθ +
p

ν
n − 2lsdn +

2
3
lsIdn+

+
β1

ν

1
2

(
gradg + gradTg

)
n +

β2

ν
(divg)n .

(112)

The ratios ls(β1)
= β1/ν and ls(β2)

= β2/ν can be called the thermal transpiration
slip coefficients. It should be noted that despite ls = µ/ν be the main character-
istics of the external viscosity, and cannot be further treated as the only one and
general characteristic of the Navier-Stokes layer. For example, in the case of the
rigid cold particle immersed into a gas at rest (v ≡ 0), and under assumption of
the temperature distribution linearity (gradg), the thermal velocity of a particle
is

U = vwall = −cvθgradsθ . (113)

Nowadays, the velocity U is called the thermophoretic velocity [6]. It characterizes
the motion of nanoparticles that follows from the surface gradient of temperature.
It should be underlined that Maxwell was able to find an explicit formula for the
length of slip, using apparatus of the kinetic theory, 28:

ls =
µ

ν
=

1
2
µ (2π)

1
2 (pρ)−

1
2

(
2
f
− 1

)
=

2
3

(
2
f
− 1

)
l , (114)

where l means the Meyer relation for the mean-free path of a gas molecule, and f
is the fraction absorbed. If f = 1/2, or the surface acts as if it were half perfectly
reflecting and half perfectly absorbing, then we got ls = 2l. For fully absorbing
surface is ls = 2/3l. In practice the slip length depends on a kind of surface
material and gas. From Kundt and Warburg experimental data it follows that for
air on a glass surface at 17 ◦C the slip length is ls = 8/p, and for hydrogen is ls =
15/p, where the pressure is then given in dynes per square centimeter [35]. The
coefficient of a partial absorption f is usually called in contemporary literature
as tangential momentum accommodation coefficient (TMAC). It accounts for the
average tangential to a surface momentum exchange between the fluid molecules
and the solid molecules, and is not dependent on the heat flow. The value of this
coefficient should be evaluated experimentally, but it is known that it varies from
zero (for specular reflection) up to unity (for complete or diffuse accommodation)
[20, 50].

Unfortunately, the second coefficient of the Maxwell model, i.e., the coefficient
of thermal mobility cvθ, essential for the thermal transpiration, has been omitted

28See [44], Appendix, Eq.(67).
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from any literature discussion. Indeed, it is erroneously defined by Eq. (106),
since it suggests its independence on the surface properties. Notice that it is quite
opposite situation then in the Reynolds boundary layer model, where Reynolds
gives much more correct definition of the thermal mobility coefficient, and no so
complex definition of the slip length. Strictly speaking, Eq. (106) implies that
the coefficients ls and cvθ are dependent on one another.

If one introduce, following Maxwell, a directional derivative, d
dν , directed along

some main flow direction, ν, with the cosines of the normal ν given by l, m, n
then the condition (107) can be expressed in the original form ([44], Appendix,
Eq. 69):

u − G d
dν

[(
1 − l2

)
u − lmv − lnw

]
+ 3

4
µ
ρθ

(
d
dx − l d

dν

) (
θ + 4G dθ

dν

)
= 0 ,

v − G d
dν

[(
1 − m2

)
v − mnu − lmw

]
+ 3

4
µ
ρθ

(
d
dy − m d

dν

) (
θ + 4G dθ

dν

)
= 0 ,

w − G d
dν

[(
1 − n2

)
w − nlu − mnw

]
+ 3

4
µ
ρθ

(
d
dz − n d

dν

) (
θ + 4G dθ

dν

)
= 0 .

(115)

These equations are called the “Maxwell slip boundary layer”. Let us note that
in each of these equations, i.e., in the first one (106), simplified along the axis y,
in Eq. (107), or in the general form of (114) in a special surface direction, the
very particular role plays the gradient of temperature. It is a completely external
surface effect which is not connected with a form of stress tensor, for instance with
(105). It means that the motion of the gas close to a solid surface, in general is
governed by two kinds of forces. The first is a mechanical one, which is connected
with the external viscosity, and the second one is a temperature gradient which
drives of gas particle close to the surface from colder to hotter part. Therefore
the coefficient of thermal mobility cvθ (see: Eq. (111) above) is independent from
mechanical layer properties and should be experimentally verified29.

Finally, let us recall Maxwell solution for the flow of a gas in a long capillary
tube having inner radius α, which occurs under two driving constant forces. These
forces are a pressure transpiration due to difference of pressure at the ends of the
tube, and the thermal transpiration due to difference of temperature at the same
ends of the tube. Since the gas is flowing from the higher to lower pressure
and, simultaneously, from the colder to the hotter end, then these effects can
be summarized. In a particular case, where the driving forces are opposite and
equal themselves, there is no net outflow of gas from the capillary. Then an

29There are numerous modern papers that mention about the proper experiments. The im-
pressive electrokinetic properties predicted for a carbon nanotube channels have not yet been
measured in careful experiments [6, 68].
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enhancement of mass flux due to the Maxwell slip is30:

ṁMaxwell

ṁPoiseuille
=

(
1 + 4

ls
a

)
− 8

π
cvθ

µ

ρa4

dθ

dz

(
dp

dz

)−1

. (116)

This enhancement is essential only if the inner radius a is small in comparison
with the slip length ls and thermal mobility cvθ is small. Thermal contribution
to the slip is important when the gas is rarefied. Both driving forces (per unit of
length of the pipe): dp and dθ, can be in opposition. In a particular case there is
no flow in the pipe ṁ = 0. Then we have31

dp

dθ
= 6

µ2

ρθ

1
a2 + 4lsa

. (117)

For given temperature difference dθ = 100 K, under the pressure of 40 mm of
mercury, and assuming ls = 0.00016 cm, this formula leads to the resulting pres-
sure at the hot end which exceed that at the cold end by about 1.2 millionth
of the atmosphere [44]. Modern numerical techniques allowed us to reconstruct
this experiment by means of finite volume method. Obtained results are however
slightly different — see Fig. 4, point b) for which ṁ = 0.

9 Reynolds boundary layer

Osborne Reynolds is the sole author of the thermal transpiration discovery [52].
He had his own line of explanation for thermal transpiration, and contrary to
Maxwell, his own line of reasoning. He asserts that a primary reason for the
thermal transpiration in the bulk motion is not the second gradient of tempera-
ture along the axis of a capillary, but rather an axial gradient of acceleration —
when it acts close to the wall surface it enhances the normal Navier slip. Let us
now return to the forgotten Reynolds’ paper, that deals mainly with the experi-
mental discovery of thermal transpiration [52]. This paper, after some critics of
Reynolds’s methodology of mathematical treatment of the subject, was removed
from the official scientific practices, and nowadays is formally out of substantial
discussion. The reason, for such rejection from scientific considerations, of the

30Another objective for analytical study lies in exploring the underlying physics of the so-
called Knudsen paradox [45, 34]. Explanations of this paradox cannot be given by model of
Navier slip layer, and needs more advanced method of modeling [33, 43]. Let recall, that the
Knudsen paradox relates to the presence of a minimum of mass flow rate in a function of the
Knudsen number [35, 22]. Thus, the exploration of Knudsen paradox and its full understanding
also require a considerations on the limit of continuum approaches. It is fact, that the Knudsen-
Gaede flow should be a fundamental benchmark for nanoflows of rarefied gases like the Pouiselle
or Couette flow at macroscale.

31See [44], Appendix, Eq. (81).
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Figure 4. The calculated mass flow rate and relevant velocity profiles in the Maxwell capillary
tube for given constant temperature difference dθ = 100 K, and for different dp:
a) 0 Pa, b) 1.1 Pa and c) 10 Pa. The case a) describes pure thermal transpiration
(no pressure driven flow), where slip velocity vs = 0.0077 m/s drives the bulk flow of
a gas.
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paper entitled On certain dimensional properties of matter in the gaseous state,
is probably not connected with the thermal transpiration per se, but rather with
a great Reynolds’ scientific goal which was the unification of three transpiration
phenomena into a generalized model32. These phenomena are: the Graham “pres-
sure transpiration”, the Graham “concentration transpiration” and, just discovered
by Reynolds, the “thermal transpiration”. In order to show how Reynolds made
this, let (according to Reynolds) denotate 	, θ, N the normal pressure, tempera-
ture and mole concentration of a gaseous component (for instance N1 = ρ1/M1),
respectively. We can obtain a unified model of pressure, temperature and con-
centration transpirations in the boundary layer, by adding the particular contri-
butions described by equations (see [52], Eqs. (110), (112) and (117)). Starting
from the Stokes boundary layer equation, −	n + fAB + pAnA = 0, such a model
can be presented shortly to be

ν (v − vwall − cv
grads	 − cvθgradsθ − cvNgradsN) +
+ (p − 	)n − 2µdn + 2βd(2)n = 0 .

(118)

Three serious differences with Maxwell’s boundary condition (106) can be ob-
served here. The first one is an explicit appearance of the pressure gradient
grads	, realizing the Graham pressure transpiration phenomena, that is some-
times called the pressure driven motion. For the same material of capillary tube
and for different gases, the pressure mobility coefficient cv
 varies. Graham found
that the ratio of cv
 for air and hydrogen is 2.04 [25, 26]. The second differ-
ence concerns more correct definition of the thermal mobility coefficient cvθ than
Maxwell has made. For description of the thermal mobility, Reynolds has intro-
duced not a single one, but four accommodation coefficients f1, f2, f3, f4. The
two first depend on the properties of solid surface material and a kind of gas,
and the next two describe a more complete, than Maxwell’s, process of inter-
action of gas with the boundary. The last difference is related to the Graham
diffusional transpiration described by the concentration mobility coefficient cvN .
These three differences allow us to say that there is a substantial base for dis-
tinction between both models of boundary layer. Let us note yet an additional
difference in the definition of the Cauchy momentum flux on the boundary. In
Maxwell’s proposal (see Eq. (100) above), pA contains the second gradients of
temperature. On the other hand Reynolds’ proposition extends definition of pA

by taking a diade of acceleration of deformation d(2). Reynolds assumes further
that the coeficient β responsible for accelerative contributions should be found on
the base of a researches on “dimensional properties of mater”. The consistency of
the mathematical model of fluid in a bulk, and within the layer boundary was the

32The most important criticism comes from W. Feddersen, M.J. Violle, and G.F. Fitzgerald
(see: Philosophical Magazine, February, 1881).
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reason for writing him the paper On the equations of motion and the boundary
conditions for viscous fluid, [53]. Here, Reynolds proposes a new definition of the
Cauchy momentum flux, where an acceleration of deformation diade d(2) appears.
It is defined as a symmetric tensor in terms of the acceleration vector a:

d(2) =
1
2

(
grada + gradTa

) 
= ḋ . (119)

Thus, the Stokes form of the momentum flux is extended to be

pA ≡ p = pI − 2µd +
2
3
µIdI + 2βd(2) , (120)

where the Reynolds coefficient β = r/p is inversely proportional to pressure.
Thus, substituting the above constitutive equation to the momentum balance,
ρv̇ + divp = ρb, and omitting div

(
gradTa

)
, we obtain33

ρa + βlapa + gradp − µlapv − 1
3
µgradId = ρb . (121)

The part with β coefficient can further be omitted in the bulk of fluid flow, but
on the boundary it represents very important – an accelerative – contribution to
the slip conditions.

The problem of consistency of field equations in the bulk with those postulated
on the boundary, started by Reynolds, is actual up to day. In 1964 Deissler, on
the basis of kinetic theory, has proposed a slip velocity equation where the second
and higher derivatives of gas velocities take part [11]. It can be shortly written
as ([33], Eq. (2.29)):

ν (v − vwall) = µ

[
C1Kn

∂v
∂n

+ C2Kn2 ∂2v
∂n2

+ ...

]
. (122)

The term argued that higher powers of the Kn and higher order derivatives of
velocity must be used in the slip equations. On the other hand, well known kinetic
theory models of stresses like the Maxwell (Eq. (100)), Burnett, Chapman, Grad,
have no any contribution of the second velocity gradient — probably Reynolds
non-explicit contribution via gradient of acceleration d(2) is much better motivated
physically.

In general, the consistency of the field equation within the bulk and on its
boundary for weakly-nonlocal continua with higher gradient has not been solved
completely yet. There are no appropriate scientific tools for setting the mathemat-
ically concise system of equations. The only one known and recognized method is

33See [53], Eq.(12).
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the so-called Green transformation (1839), which using extended definition of di-
vergence can find true interrelation between the bulk and the boundary equations.
For instance, when a continuum contains the time derivative of rate of deformation
ḋ and its gradient grad d, it is simply to show, using the Green transformation
twice, that the balance of momentum takes the Skiba-Pearson form:

ρ
d

dt

[
v − div

(
∂φ

∂ḋ

)]
− ρb + div

[
p − div

(
∂φ

∂gradd

)]
= 0 , (123)

where the additional dependence is described by the Rayleigh-like dissipation
function φ = φ

(
ḋ, gradd

)
, which fulfills, from the definition, the perpetuum mo-

bile principles. Fried and Gurtin, assuming only the gradient of d: φ = φ (gradd),
have defined the hyperviscous stress triade G = Gijkei ⊗ ej ⊗ ek [18]:

G =
∂φ

∂gradd
= η1grad (gradv) +

+ η2

[
gradT (

gradTv
)

+ gradT (gradv) − I ⊗ lapv
]

,

(124)

with two additional internal viscous friction coefficients η1 and η2. Then they have
obtained the following a simplification of the Skiba-Pearson momentum balance
in the bulk:

ρ (v̇ − b) + div (p − divG) = 0 , (125)

and not one but two boundary conditions coming from applying the Green trans-
formation twice [18]:

pn = pn − (divG)n − divs (Gn) − Ib (Gn)n ,
mn = (Gn)n .

(126)

These are nothing else as an extension of the classical Cauchy definition of traction
force pn = pn. The first traction force is working on a field of velocity (like the
classical Umov flux of mechanical energy), and the second fraction vector mn,
new in the context of viscous fluids34, will be working on the normal derivative
of velocity ∂v

∂n [18]. Therefore, Fried and Gurtin postulate the following slip and
adherence condition:

ν (vA − vwall) = pn : generalized slip condition , (127)

νA

(
∂vA

∂n
− ∂vwall

∂n

)
= mn : generalized adherence condition , (128)

34For solid continuum with the second gradient including such a second traction force has
been introduced by S. Forte, M. Vianello, On surface stresses and edge forces, Rendiconti di
Mathemetica 8, 409-426 (1988).
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where ν = µ/ls and νa = µ1/la stand for the external friction coefficient and ex-
ternal adherence friction coefficient ls and la are the slip length and the adherence
length. This model of boundary layer is fully consistent with its bulk model of
the second order fluid, and covers the Deissler one, Eq. (122).

10 Interfacial mobility mechanisms – a classification

Let us consider, as an illustrating example of the generality of Stokes’s slip con-
dition, a case of a non-Newtonian incompressible fluid. This kind of fluid isn’t
anything else but the case of nonlinear extension of Newton’s hypothesis of in-
ternal viscosity, important for stating a constitutive equation for such fluids like
cream, oils or bitumen. In those cases the Stokes pressure diade p is determined
by two shearing viscosity coefficients µ1 and µ2:

pA = pI− µ1d − µ2d2 . (129)

Let us stand a force balance according to the Stokes’s concept of a boundary
layer (Eq. (96) above). Omitting the capillarity surface stress tensor ps = 0, and
assuming that the solid body is a fixed, rigid and in the stress-free state. i.e.
pBnB = 0, we suppose the boundary external friction force fAB = ν (vA − vB) =
ν (vA − vwall), and the external friction force pAnA according to Eq. (129). After
balancing these forces we have

fAB + pAnA + pBnB =
(
pI− µ1d − µ2d2

)
n + ν (vA − vwall) . (130)

This formulation of a force balance in the Stokes layer mathematically and also
physically is inconsistent, since we have two internal viscosity coefficients µ1 and
µ2 and only one external, Navier viscosity35 ν.

Let us consider now a more consistent velocity slip boundary conditions that
should be consistent with the Newton postulate stating, that a friction phe-
nomenon depends on three components: the pressure dependent part, the relative
velocity part, and the square velocity dependent part. Let the Newton postulate
be true for a fluid in the bulk as well as for the thin layer on a boundary surface
realizing a contact with a solid surface. Then taking into account the external
friction force in the Newtonian form (Eq. (90) above) and the force of an internal

35We keep Stokes’s denotation of the coefficient of external viscosity. There is a subtle point
here, allowing us to say that there is no difference between the Stokes coefficient ν and the
Navier coefficient E, i.e. E ≡ ν. Unfortunately, this statement is not accepted in the literature
since, usually, different coefficients mean different physical quantities.
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friction in the form of Eq. (130), we have more consistent boundary conditions:

(
pI − µ1d − µ2d2

)
n + 	n + fSS′N

v − vwall

|v − vwall|+

+ ν (v − vwall) + fκ (v − vwall)
2 v − vwall

|v − vwall| = 0 .
(131)

Some consistencies of this condition can be simply recognized if we compare the
internal and external coefficients that appear in the model. This consistency can
even be extended on reversible properties of the model, i.e., the internal (Euler)
and the external (Stokes) pressures p and 	, respectively. In the Tab. 1 the
comparison of these properties is shown .

Table 1. Comparison of a concise model of internal and external friction, according to Newton’s
postulate. The model (†) of a viscous bulk pressure has been proposed by Natanson
[45].

Internal (bulk) External (boundary) Characteristic ratio
Elastic pressure p [Nm−2] 
 [Nm−2] λpress = p/

Frictional pressure pvis = kvisJ

† [Pa] fSS′ λvis = kvis/fSS′N
Linear slip velocity µ1 [Nsm−2] ν [Nsm−3] l1ν = µ1/ν
Square slip velocity µ2 [Ns2m−2] fk [Ns2m−3] l2ν = µ2/fk

The better consistency of the above model results from the fact that it needs
three coefficients of internal friction (kvis, µ1, µ2) and three coefficients of external
friction (fSS′, ν, fk), respectively. Therefore, we can define a ratio between the
internal and external friction by a dimensionless coefficient λvis, and two lengths
of velocity slip: l1ν and l2ν (see Tab. 1). Having a measure of internal properties of
friction, one can connect the external properties of friction at the Stokes boundary
layer by appropriate closures written for λvis, l1ν and l2ν , respectively.

In turn, going back to the model for an inconsistent layer Eq. (130), and after
dividing it by the external Navier viscosity, ν, we obtain the more familiar form
of Eq. (97) (its surface part):

Is (v − vwall) = Is

(
2lsd + l̇sd2

)
. (132)

In Eq. (132) the slip length ls = µ1/ν is defined as a ratio between the internal
and external viscosity. However, the ratio µ2/ν cannot be recognized as a slip
length but rather as a rate of slip length l̇s. Let us consider a classification of
different phenomenological models for Navier-Stokes boundary layer. Balance of
the momentum for the Navier-Stokes layer, generally, has an above postulated
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form:
∂t (ρsvs) + divs

(
ρvs ⊗ vs‖

) − wnIbρsvs+

+ divsps + ∂n (psn) + [pAnA + pBnB + fSA + fSB] =
= ρsbs + ṁA (vA − vs) + ṁB (vB − vs) .

(133)

In many situations the slip velocity vs can be calculated from a simplified form of
above equation. If we omit the inertia properties of the layer, migration of mass
across the layer, and the capillary and viscous surface tensors, Eq. (133) reduces
to the simple balance of surface forces:

−	n + (pA − pB)n + fAB = 0 on M . (134)

Since pA and pB are well defined for arbitrary fluids, the main problem is a de-
termination of 	 and the force of external friction fAB .

Here, we must note that the previous statements of the phenomena of sur-
face mobility, called transpiration, should be added to the proper definition of
surface friction. Yet another mobility force, other than the difference of pres-
sure or temperature, was discovered by Graham in 1849. He found a new kind
of transpiration called “atomisis” [25, 26]. This phenomena is nowadays called
“diffusional transpiration” or “diffusionphoresis”. It is quite different kind of flow
than the classical transpiration flow induced by difference of the normal surface
pressures, i.e. “pressure transpiration”. The diffusion transpiration deals with a
flow of gas mixture by a long capillary pipe, where there is another interaction
of every mixture component with a surface. It leads to the mixture separation.
In this case the most important is a coefficient of diffusion mobility, cvN . An-
other type of induced motion is due to the difference of an electric potential, φ,
on a surface. This phenomenon is called “electrophoresis” and is governed by an
electro-mobility coefficient36, cvφ. Other mobility mechanism is connected with
the phase transition change [4, 6] and the surface gradient of the phase order
parameter x.

Let us note that these all types of mobility, i.e., pressure, thermal, diffusional,
phase, and electrical define only an external mobility force in the Stokes layer.
This force, partially given by Eqs. (112) and (120), can be generalized to

fAB = ν (v − vwall − cv
grads	 − cvθgradsθ − cvNgradsN−
+cvφgradsφ − cvxgradsx) ,

(135)

where ν is the coefficient of external viscosity, defined on the mean surface of the
Stokes layer, vs = v−vwall are velocity vectors on top and bottom surface of the
Stokes layer, and N is the concentration of gas in the mixture.

36Electrophoresis was discovered by von Smoluchowski in 1916 [64]. See also H.J. and Keh,
J.L. Anderson, Boundary effects on electrophoretic motion of colloidal sphere, J. Fliud Mech.
153, 417-439 (1985).
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In a special case, when gas is at rest, we can observe a motion of the particle
induced by different surface inequalities. This kind of motion is called in the
literature the “phoretic motion” [6]. In general, any nanoparticle immersed in
the fluid may undergo simultaneously five types of motions which are shown in
Tab. 237.

Table 2. Five kinds of motions connected with the surface mobility of a particle immersed in
a fluid at rest. Here: cvθ – the thermo-mobility coefficient, cvN – the concentration-
mobility coefficient, cvφ – electro-mobility coefficient, cv� – the pressure-mobility co-
efficient, cvx – the phase-mobility coefficient.

Phenomena Corresponding velocity Driving potential
Thermophoresis vwall = cvθgradsθ Temperature θ
Diffusionphoresis vwall = cvNgradsN Concentration N
Electrophoresis vwall = cvφgradsφ Electric potential φ
Pressurephoresis vwall = cv�grads
 Pressure 

Phasephoresis vwall = cvxgradsx Order parameter x

11 Conclusions

In the paper the applications of the extended Navier-Stokes boundary layer equa-
tions, including the different surface mobility mechanisms are presented in order
to explain the enhanced flow in microchannels.

Generalization of the Navier-Stokes boundary slip layer, formulated in the
present paper, supplements the original Navier-Stokes model by additional surface
quantities like the surface mass and the surface momentum flux. In the present
case the slip velocity vs is determined from the solution of the complete balance
of momentum (50) written within the layer. Since the stress tensors pA and pB

are determined in the bulk and cannot be arbitrarily changed at the boundary,
such an approach leads to the separation for those constitutive relations which
can be imposed to fulfill the surface balance of momentum. There is still an open
place for the modeling of the surface momentum diade ps and the surface friction
force fAB, where indeed a second gradient of surface velocity can be postulated.

37These phenomena must be distinguished from the motionless phenomena like: “tempera-
ture jump”, “concentration jump”, “potential jump” related with the external heat conductivity,
external mass diffusivity, and external electric conductivity coefficients, respectively. Recently
the phenomenon of jump concentration of salt in a gel mixture has been discovered by [32].
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