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Precise amplitude and phase measurement of a narrowband signal is required in many 
practical applications related to underwater sensing, navigation, and positioning. In this 
paper, we propose a novel method for digital signal acquisition based on multiple signal 
sampling. This method is an extension of quadrature sampling where amplitude and phase of 
a harmonic signal can be obtained based on only two samples taken within one period. The 
advantage of our generalization are reduced errors caused by quantization noise of A/D 
converters. 

INTRODUCTION 

Amplitude and phase of a harmonic signal often convey important information. For 
instance, several underwater navigation systems rely on relative phase measurements for 
bearing and azimuth estimation as well as for range determination [1, 2]. Robust and precise 
methods are required to assure high system dynamics and robustness in the presence of noise. 
Several algorithms for amplitude and phase measurements, both analog and digital, have been 
proposed in the literature [1, 3, 4]. In this paper, we present a novel digital method for 
amplitude and phase measurement of harmonic signals that offers better performance in the 
presence of quantization noise. 
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Fig.1  Measurement System 
 
In general, several harmonic signals at the same frequency f are applied to the 

measurement system as shown in Fig. 1. The function of the system is to recover amplitudes 
and phases relative to a reference signal sr(t) from its discrete samples. We will discuss here a 
single signal s(t) given by equation (1) since generalization to several signals is 
straightforward:  

 
s(t) = A cos(ωt +ϕ ).                   (1) 

 

Equation (2) represents the reference signal 
 

)cos()( tAts rr ω=                                                           (2) 
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The object of the measurement is to estimate the amplitude A and the phase φ of s(t) 
based on discrete samples of s(t). 

A classical digital algorithm for amplitude and phase estimation is based on so-called 
quadrature sampling. Assuming that amplitude and phase of the signal s(t) are constant within 
one period T, amplitude A and the phase φ can be derived from only two samples P1 and P2 
(called a doublet) taken in quadrature, that is, T/4 apart as shown in Fig. 2. 
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Fig.2  Quadrature Sampling  

 



   

From equations (1) and (2) we can obtain the following discrete samples: 

)cos()0(1 ϕAsP ==                                                                                                       (3) 
P2 = s(T 4)= Acos((ωT 4)+ϕ)= Acos(ϕ +ωT 4) )sin()2cos( ϕπϕ AA −=+=      (4) 

From equations (3) and (4), we can obtain the amplitude and phase of s(t), that is, 
2
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The minimum doublet sampling interval is every period T; therefore, the maximum 

doublet sampling frequency is fd =1/T. The actual sampling frequency is determined by 
Nyquist rates as given by bandwidths of A(t) and ϕ(t).  

1. PROBLEM FORMULATION 

Fig.3 shows the general block diagram of the proposed measurement system for a single 
signal s(t). A harmonic reference signal sr(t) is converted to square waveform sr’(t) by a zero-
crossing detector. The positive slopes of this waveform provide period timing to the 
processor. The frequency multiplier generates the sr’’(t) waveform at Kf frequency that 
provides sampling instances to the processor. The parameter N is controlled by the processor 
based on external conditions. The A/D converter digitizes s(t) at suitable sampling instances 
and transfers the data to the processor. During A/D conversion a quantization errors are 
introduced to each sample. 
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Fig.3  Block Diagram of Measurement System
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2. QUADRUPLET SAMPLING  

We will generalize quadrature sampling here by taking four samples (a quadruplet) per 
period T, instead of two samples (doublet) as in the classic approach. Period T is divided into 
four quadrants (T/4) and one sample is taken at the beginning of each quadrant as illustrated 
in Fig.4. This results in four samples, P1, P2, P3, and P4 per period T. This situation 
corresponds to N = 1 in Fig.3.  
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3.  

Fig.4 Quadruplet Sampling  

 

According to equations (1) and (2), we can obtain the following:  
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From equations (7) through (10), we obtain: 

)cos(231 ϕAPP =−                                                                                                       (11) 
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and, therefore:  
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ϕ = tan−1((P4 − P2 ) (P1 − P3 )).                                                                                      (14) 

 

The advantage of this approach is an expected better system performance in the 
presence of sampling errors since the amplitude and phase calculations are based on four 
samples (quadruplet), rather than the two samples (doublet) in the classic approach. Here, 
again, the frequency of quadruplet sampling is determined by the bandwidths of A(t) andϕ(t).



   

3. GENERALIZED SAMPLING (K-PLET) 

The approach can be generalized further by dividing each quadrant T/4 into N equal 
parts. The first sample is taken at the beginning of each part. This leads to uniform sampling 
frequency fs = 4N/T within one period or K= 4N samples (K-plets) per period where N ≥ 1 is 
an arbitrary integer. This generalization is illustrated in Fig.5, where Pij denotes a sample in 
the ith quadrant (i=1, 2, 3, 4) and j denotes the sample number within the ith-quadrant (j=1, 2, 
3, 4, …, N). 
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Fig.5 Generalized Sampling (4N-plets) 

 
According to equations (1) and (2), we can obtain the following: 
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From equations (15) through (22), we obtain: 
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From equations (23) and (24), equation (27) follows, and from equations (25) and (26), 
equation (28) follows: 
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Let: 

X1 = (P1 j −P3 j )− (P21 −P41)sin(( j −1)π / 2N )[ ]
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then equations (27) and (28) can be rewritten as: 

31 )(cos2 XAX ϕ=                                                                                                       (29) 

32 )(sin2 XAX ϕ= .                                                                                                     (30) 

It can be proven that  and, with equations (29) and (30), one can finally obtain 
equations (31) and (32), that is: 
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ϕ = tan−1(X2 X1).                                                                                                       (32) 

Equations (31) and (32) reduce to (13) and (14) for N = 1, as expected. 



   

4. SIMULATION RESULTS AND CONCLUSIONS 

The expected advantage of the presented method is its robustness in the presence of 
quantization noise related to the resolution of A/D converters. Because of the complicated 
nature of the general case of K samples per period, we resort to computer simulation to gain 
some indication of improvements.  

For simulation, the following parameters were assumed for the signal: A = 1, ϕ = 45o, 
f = 10kHz. Each sample is contaminated by random, additive, independent, quantization noise 
ε (error) with uniform distribution of -4/256 ≤ ε ≤ 4/256. Each simulation was performed 
1000 times for different values of K.  

Table 1 shows the results. The average estimated amplitude A and phase ϕ  were 
calculated together with their standard deviations σA  and σφ. The improvement in term of 
smaller standard deviations in comparison to classic quadrature sampling (with K=2) is 
shown for both amplitude and phase estimates. As we can see, the improvement is substantial 
for K = 4, but is less pronounced for larger K. This fact must be considered when making 
compromise between accuracy, sampling rate and A/D converter resolution. More 
investigations are needed to fully explore those aspects. 
 

Tab.1  Simulation Results 

 

K A  σA Improvement ϕ  σφ Improvement

2 0.99981 0.0086849 N/A 44.9939 0.52516 N/A 

4 1.00030 0.0064099 26.20% 44.9991 0.36781 30.00% 

8 0.99997 0.0059593 31.40% 45.0096 0.34504 34.30% 
12 0.99957 0.0060931 29.90% 45.0117 0.33568 36.10% 

16 1.00000 0.0059374 31.60% 44.9906 0.35030 33.30% 
20 0.99994 0.0061364 29.40% 44.9913 0.34834 33.70% 

24 1.00020 0.0062669 27.80% 45.0156 0.34400 34.50% 

28 0.99999 0.0062921 27.60% 45.0116 0.35748 31.90% 
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