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The paper presents a short review of the modal representation and inversion techniques 
applied to problems of ocean acoustic tomography and geoacoustic inversion. The use of the 
modal inversion techniques is based on the assumption that the modal component of the 
acoustic field can be recognized in the recorded acoustic signals. The paper is referred to the 
main techniques that have been applied so far by the group of the Institute of Applied and 
Computational Mathematics at FORTH and address their benefits and drawbacks.  

INTRODUCTION  

Acoustical methods for the estimation of critical parameters of the ocean environment 
including the water column and the sea floor have been extensively used over the last years as 
complimentary tools to traditional oceanographic and seismic methods.   

The methods we are dealing with in this paper are based on measurements of the 
acoustic field obtained at long distances from a known source. For every application an 
inverse problem is defined of the form 
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where,  is the vector of  the data (taken from the measurements) and is a vector of 

the recoverable parameters. Of course there is no evidence that the equations thus defined for 
a general inverse problem contain enough information to specify uniquely the model 

d m



parameters, or that they are consistent. A general inverse problem is known to be ill-posed.  
Therefore a thorough analysis of the corresponding inverse problem is required.  

The recoverable parameters in our case is the sound speed profile in the water column 
, the current velocities , the geometry of the interfaces in the water column and the 

bottom, the compressional  and shear  velocities in the bottom and the 
compressional and shear wave attenuation parameters  and . Note that in this 
notation, water parameters are in general considered 3-Dimentional, whereas those of the 
bottom are functions of the depth only.  It should be underlined however that the research for 
fully 3-D inverse problems is at its very early stages and so far results can be obtained for 
some specific 3-D cases only. 
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The vector d contains the “observables” of the signal, which are characteristic 
components that in turn can be associated with the recoverable parameters through an 
appropriate propagation model. This paper is devoted to observables directly related to the 
modal character of the acoustic field and we will also emphasize cases where the sound speed 
profile has to be recovered.  The theory of normal-mode propagation in the ocean will be 
considered known and extended reference to the differential equations governing the forward 
problem of acoustic propagation will be omitted.   

1. METHODS BASED ON MEASUREMENTS OF THE “MODAL PHASE” 

 This is a rather “old” technique. The modal phase is defined at range r by the following 
notation: 
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where is the eigenvalue of the “depth problem” defined at each range r’. [1]-[4]. 
The modal phase can be measured through an additional inverse procedure after measurement 
of the acoustic field at a vertical array of hydrophones. The procedure is known as “mode 
filtering”[5] and is based on the normal-mode representation of the time independent acoustic 
field (pressure) in the form : 

( ')nk r

 
(1)

0 0
0

( , ) ( ;0) ( ; ) ( )
4 n n

n

i
np r z u z u z r H k r

ρ
= ∑      ,                             (3) 

 
where, a cylindrical co-ordinate system has been adopted in an axially symmetric 

environment,  is the eigenfunction of the depth problem and is the Hankel function of 
the first kind and zero order. 

nu (1)
0H

0ρ is the density in the water column where the sound source has 
been placed. In formula (3), it is assumed that the environment is range-independent and the 
eigenvalues are defined uniquely for all ranges. However, formula (2) indicates a range-
dependent environment. Note that the specific form of the modal phase is derived from 
equation (3), when the asymptotic form of the Hankel function is considered and an adiabatic 
approximation is adopted. In order to complete the presentation it should be added that a 
continuous wave source has been assumed and thus the acoustic wave equation by separation 
of variables is transformed to the Helmholtz equation. Therefore the following analysis in this 
chapter is referred to a single circular frequency ω. 

As soon as the modal phase is obtained, its variation with respect to a background or 
reference (known) environment can be associated with the sound speed difference ( , )c r zδ  in 



the water column and the sea-floor, with respect to the same background environment, 
through an equation of the form : 
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 where is a known kernel calculated for the reference environment [3]. 
Equation (4) defines an inverse problem given at integral form : 
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• Given measurements of the modal phase difference with respect to a background 

environment for N propagating modes, estimate the corresponding sound speed 
differences. 

 
The inverse problem thus defined is more easily solved by appropriate discretization of 

the environment in range and depth. Thus, the sound speed difference is defined at the cells of 
the discretizatiuon and the inverse problem is now transformed to a discrete inverse problem 
solved by some appropriate technique, such as the singular valued decomposition method [4]. 
Note that this technique defines a linear inverse problem and the variations with respect to the 
reference environment are considered small in order that formulas like (4) are applicable. 

Although the method seems to be easily applied when there exists a good knowledge of 
the background environment, it has several disadvantages. The main disadvantage is that a 
vertical array of hydrophones is necessary in order to get a mode-filtering. When a range-
dependent environment is considered, mode-filtering is not easily performed. Finally, the 
condition of the kermel matrix of the discrete inverse problem is not always good and 
therefore the inversion results are not always reliable [4].  

In any case it has been shown that the exploitation of the a-priori information on the 
environment which is expressed in terms of empirical orthogonal functions (EOFs) has many 
good effects on the performance of the inversion procedure. 

2. METHODS BASED ON THE MEASUREMENTS OF THE MODAL TRAVEL TIME 

When the experiments are to be performed with few receiving hydrophones, modal 
filtering is not practical and measurements in the time domain have to be exploited. The usual 
approach in this case is to get the acoustic field in the time domain by applying inverse 
Fourier transform to the acoustic field calculated at specific frequencies within the signal 
bandwidth. Measurements at a single hydrophone are enough for the application of these 
methods.  

It is well known that the acoustic field propagates in a waveguide in the form of energy 
packets, each one corresponding to a propagation mode under a characteristic velocity which 
is defined as 
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where, 0ω  is the central circular frequency of the signal bandwidth. There are analytical 
formulas for calculating the group velocity given the environmental parameters [2].  

The idea of the inversion procedure in this case is that as soon as the modal field is 
identified at a single receiver, the arrival times of the propagating modes can be associated 



with the sound speed in the water column through the normal-mode theory and thus to define 
an appropriate formula leading to either a continuous or a discrete inverse problem in the 
same way as in the previous case [6]. 

Indeed the travel time of a specific mode at range r is  
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and thus the travel time is associated with the eigenvalues at the vicinity of the central 

frequency and eventually with the modal phase we defined earlier. 
Figure 1 presents a simulated acoustic signal in a shallow-water tomographic 

experiment. The range where the measurements are considered is 10000 m and the central 
frequeny of the signal is 150 Hz. The modal character of the signal is evident, although an 
additional process is required to identify the peaks of the signal as modal arrivals (see note at 
the end of next chapter).  

  
 
 

 
 
 
 
 
 
 
 
 

Fig.1 A simulated acoustic signal in a typical shallow water environment    

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Mode identification for the signal of Fig. 2 

 



2.1  Linear approach 
 
Making the same assumptions as before in what concerns the background environment, 

and its difference with respect to the actual one, an integral equation of the form   
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 is defined, where the kernel is calculated as derivative at the central frequency. In 

practical applications the derivative is calculated numerically and the integral equation is 
transformed to a matrix notation through appropriate discretization of the environment [6].  

The main advantage of this approach is that it is technologically easier to be applied as 
there is a need of only one hydrophone for the measurements. From the theoretical point of 
view it still has drawbacks as the adiabatic approximation used when a range-dependent 
environment is considered is not always appropriate for every application. Also problems 
associated with the quality of the kernel matrix remain similar to the previous case.  

It should be noted that in order that this technique is applicable in real cases, the 
identification of the propagating modes should have been performed before the inversion 
starts. An effective identification process is described in [7] and an example of the mode 
identification is presented in figure 2, based on the signal of figure 1. 

 
2.2   Non-linear approach 

 
When a reference environment is not known or difficult to be defined, a linear approach 

is not any more applicable or reliable, as the variations with respect to some reference 
environment may be large. 

In this case it is possible to apply a non-linear optimization technique based on the 
“matching” of the arrival times of the normal-modes of the actual environment, with the 
calculated modal arrivals of some candidate environment taken from a set of potential 
environments. 

The optimization technique is built upon an appropriate norm measuring the difference 
between the actual and calculated travel times of the identified modes. 

A very simple norm showing good performance in most realistic cases is 
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Where, itδ are the travel time differences between the actual and predicted arrivals for 
M identified modes [7]. 

The main advantage of this approach is that since a non-linear problem is defined, the 
vector m of the recoverable parameters can in principle contain as many parameters as we 
wish, including water depth, location of the source and the interfaces in the bottom etc. Thus, 
all the properties of the water column and the sea-floor can be considered simultaneously as 
the unknowns of this approach. Of course, not all the parameters show the same sensitivity 
with respect to chosen norm. However, it has been demonstrated that at least the most 
important ones for practical applications such as the sound speed profile in the water and the 
bottom can be retrieved with reliability using the suggested approach. 



Since the optimization scheme has to be applied using a great number of candidate 
environments (consider cases where we have a multidimensional search space and many 
combinations should be studied), suitable techniques minimizing the time required for the 
realization of the inverse procedure should be applied. Such methods include energy 
techniques (such as simulated annealing), genetic algorithms, neural networks or equivalent. 

In concluding this chapter we should mention that non-linear approaches can be 
combined with linear ones to improve or fine-tune the results, as the results from the non-
linear inversion can be considered as the appropriate background environment upon which the 
linear approach is based. (See for instance [8] and [9]). 

3. METHODS BASED ON THE DISPERSION CHARACTERISTICS OF THE 
ACOUSTIC CHANNEL 

An alternative way to exploit the information contained in an acoustic signal for 
inversion purposes is to transform the signal into the time-frequency plane. For this purpose 
the short-time Fourier Transform or the Wavelet Transform can be used, resulting in a modal 
representation of the acoustic field, for the full signal bandwidth (see Figure 3). Remember 
that in the previous chapter we considered representations associated with the central 
frequency only, although the signal is of broad-band character.  Although both Transforms 
result to the same type of representation (spectrogram or scalogram), the Wavelet Transform 
has been shown to provide a better analysis of the dispersion characteristics in comparison 
with short-time Fourier Transform especially in cases of relatively broad-band signals. An 
even better performance is obtained through the reassigned wavelet transform [10], [11]. 

For inversion purposes, the scalogram can be used by appropriate discertization in 
frequency and time through an optimization procedure to match the measured with estimated 
dispersion characteristics from a set of candidate environments in almost the same way as in 
the case of the travel time measurements described in the previous chapter. Thus, a non-linear 
inverse problem is again defined [12],[13]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Matching the scalogram and the dispersion curves at a typical shallow water environment 
based on measurements obtained at 100 km from the source 

The main advantage of this approach with respect to the previously mentioned ones is 
that the inversion procedure exploits more information contained in the signal as the modal 
character in a continuous spectrum of frequencies is represented. Moreover, it can be applied 



even in cases where limited possibilities of mode identification in the time domain only exist. 
Note that again a single hydrophone is enough to get the information required for the 
inversions. 

4. DISCUSSION 

The paper outlined a few inversion methods applied in problems of ocean acoustic 
tomography and bottom classification, where the modal character of the acoustic field is 
exploited. The exploitation is done both in the definition of the observables, which consist the 
input data to the inverse problem and in the model which associates the parameters to be 
retrieved with the observables. 

The methods presented are classified as linear or non-linear. The linear methods are 
associated with a reference environment, the knowledge of which is assumed necessary, 
whereas the non-linear methods are associated with some optimization approach performed 
over a relatively wide search space. 

It should be noted that modal inversion techniques are more appropriate to be used in 
shallow water environments and low frequency sources, when the number of propagating 
modes is relatively small. Moreover, they have to be applied at relatively long ranges where 
mode identification is ensured. 

In deep water environments and high frequency sources, the possibility of exploiting the 
modal character of the acoustic field for inversion purposes is very low and thus other type of 
techniques based on observables easily identified in these cases should be applied. However 
the reference to these methods is beyond the scope of this paper.  
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