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The finite amplitude wave propagation problem for circular source was considered. The 
paper presents mathematical model and some results of theoretical investigations. The 
problem was considered as an axial symmetric one. The mathematical model was built on the 
basis of the Khokhlov – Zabolotskaya – Kuznetsov (KZK) equation. To solve this equation the 
Fourier series expansion and finite-difference method were applied. The pressure harmonic 
amplitudes as a function of distance form the source and waveform were examined. Influence 
of discrete model parameters on accuracy of numerical calculations was investigated. 

INTRODUCTION 

 The wave distortion is observed during single frequency finite amplitude wave 
propagation. The waveform change is equivalent with spectrum change. It means that many 
harmonics appear during wave propagation. Therefore the harmonic analysis is very often 
used to investigate wave distortion.  

Mathematical model of the finite amplitude wave propagation problem is often built on 
the basis of the KZK equation which allows to include nonlinearity, dissipation of medium 
and sound beam diffraction. It describes pressure changes along sound beam. No analytical 
exact solution for this equation has been found yet. Consequently, it is necessary to solve this 
equation approximately. The analytic, half-analytic methods and numerical one are used to 
solve the KZK equation. The method of successive approximations to find this equation 
solution can be used when the nonlinear effects are not very big [2]. Generally, the KZK 
equation needs to be solved numerically. The finite-difference method and boundary-element 
method can be used to solve this equation [1].   

The aim of this paper is numerical analysis of the finite amplitude wave propagation. To 
solve the problem solution of the transformed KZK equation was sought in terms of the 
Fourier series expansion. The finite-differential method has been used to calculate harmonic 
components. Some problems connected with numerical solution of this equation were 
discussed.



1. MATHEMATICAL MODEL  

We assume that circular piston with a fixed radius a which is placed in plane yOz, is the 
source of finite amplitude wave. The wave is propagated in the x direction. It means that this 
axis corresponds with sound beam axis.  

The mathematical model is built on the basis of the KZK equation: 
 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

∂
∂

r
p

rr
pcp

c
bpp

cx
p '1'

2
'

2
'''

2

2
0

2

2

3
00

3
00 τρτρ

ε
τ

       (1) 

 
where p’=p-p0 denotes an acoustic pressure, variable 0/ cxt −=τ  is the time in the coordinate 
system fixed in the phase of the propagating wave, ρ0 - medium density at rest, c0 - speed of 
sound, b – dissipation coefficient of the medium, ε – nonlinear coefficient, 22 zyr += .  
 Solution of Eq. (1) is looked for inside hypothetical cylinder for , 

where X
],0[ maxXx∈

],0[ maxRr∈ max denote the biggest investigated distance from the source and Rmax is 
cylinder radius (Fig. 1).  
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Fig.1  The geometry of the problem 
 
If the source radiates a single frequency wave, the boundary condition for x=0 can be 

written in following form: 
 

ωττ sin),,0(' 0prxp −==  
 
for ar ≤ and 0),,0(' == τrxp for r>a. Parameter p0 denotes primary wave amplitude and 
angular frequency is defined by fπω 2= . Additionally we assumed that 
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and function  is a periodic function of the coordinate τ. 'p



2. NUMERICAL SOLUTION 

To solve the KZK equation numerically the non-dimensional coordinates are defined: 
 

arRRxX /,/, 0 ===ωτθ   
 

where . Substituting these variables into Eq. (1), the transformed 
nonlinear equation is obtained:  
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Solution of  Eq. (2) is looked for in form  
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Substituting (3) into Eq. (2) after calculations we obtain following partial differential 
equations for harmonic components: 
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Including boundary conditions we can calculate harmonic amplitudes An (n=1,2,…N).  

The calculations presented in this paper were done for N=3. It is possible to solve the 
problem for larger number of harmonic components, but for our values of physical parameters 
it is not necessary. Finally we solve system  of equations: 
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Pressure changes along sound beam can be analyzed substituting harmonic components 

into (3).  



To solve Eqs. (4) numerically functions An(X,R) are discretized. The rectangular net is 
constructed in domain { }],0[],,0[:),( 11 RRXXRXD ∈∈= : 
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where m=0,1,…,NX, k=0,1,…,NR. After approximation of derivatives in Eqs. (4) we obtain 
following difference equations: 
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. Finally pressure amplitudes along sound beam are the 

result of computer calculations. 

3. NUMERICAL INVESTIGATIONS 

The numerical calculations were carried out assuming that circular piston with radius 
a=25 mm was the source of harmonic wave which is propagated in water where medium 
density at rest ρ0=1000 kg/m3, speed of sound c0=1500 m/s, nonlinear coefficient ε=3.5. 
Moreover it was assumed that primary wave frequency was equal f=600 kHz.  

As a result of numerical calculations we obtain pressure harmonic components. Figure 2 
presents normalized first, second and third pressure harmonic amplitudes as a function of 
axial distance from the source. During numerical calculations it was assumed that the 
fundamental pressure p0=150 kPa. 

The correct choice of numerical parameters (step sizes, size of the space) is very 
important during numerical calculations. 

On-axis first harmonic pressure amplitude as a function of distance from the source 
obtained for two different values of cylinder radius Rmax is presented in Fig. 3. Curve number 
1 was obtained for Rmax=3a and curve number 2 for Rmax=5a respectively. In this example 
amplitude of primary wave was equal p0=10 kPa. This figure shows unphysical oscillations of 
the pressure amplitude for distance larger then x=0.2 m from the source when Rmax=3a. This 
calculating error observed for big distances from the source is connected with the sound beam 
diffraction.  

The results of numerical investigations of the space step sizes ΔX and ΔR influence on 
the calculation accuracy are presented in Figs. 4 and 5. Figure 4 shows the results obtained for 
two different sizes of the step size ΔX. Curve number 1 was obtained for and 
curve number 2 was obtained for . The results of calculations obtained for two 
different sizes of step size ΔR presents Fig. 5. Curve number 1 was obtained for ΔR=0.02. 
Curve number 2 presents similar result of computer calculations obtained for twice smaller 
size of this step size.  

5105 −⋅=ΔX
51025.1 −⋅=ΔX

 Next figures present pressure changes of the second harmonic component as a function 
of distance from the source obtained for different values of radius Rmax and step size ΔR 
respectively. The results of numerical calculations presented in Figs. 6 and 7 were done for 
the same values of numerical and physical parameters like presented in Figs. 3 and 5.  



a) 

 
b) 

 
c) 

 
Fig.2  On-axis first (a), second (b) and third (c) harmonic pressure amplitudes as a function of distance 

from the source 



 
Fig.3  On-axis first harmonic pressure amplitude as a function of distance from the source  

for different values of radius Rmax: 1 - Rmax=3a, 2 - Rmax=5a 

 
Fig.4  On-axis first harmonic pressure amplitude as a function of distance from the source  

for different values of step size ΔX: 1 - , 2 -  5105 −⋅=ΔX 51025.1 −⋅=ΔX

 
Fig.5  On-axis first harmonic pressure amplitude as a function of distance from the source  

for different values of step size ΔR: 1 - ΔR=0.02, 2 - ΔR=0.01 



 
Fig.6  On-axis second harmonic pressure amplitude as a function of distance from the source  

for different values of radius Rmax: 1 - Rmax=3a, 2 - Rmax=5a 
 

 
Fig.7  On-axis second harmonic pressure amplitude as a function of distance from the source  

for different values of step size ΔR: 1 - ΔR=0.02, 2 - ΔR=0.01 

Fig.8  Normalized on-axis pressure as a function of time for different values of radius Rmax: 
 1 - Rmax=4a, 2 - Rmax=8a 



 As a result of numerical calculations of Eqs. (5) we obtain the harmonic pressure 
amplitudes An. Substitution them into Eq. (3) yields the pressure changes along sound beam. 
Figure 8 presents normalized pressure as a function of time at distance x=0.5 m from the 
source calculated for two different values of radius Rmax. The results of calculations obtained 
for p0=10 kPa shows left figure, similar results obtained for p0=150 kPa presents right figure. 
 The results of  numerical calculations presented till now were carried out assuming that finite 
amplitude wave is propagated in non-dissipative medium (b=0). An example of computer calculation 
obtained for b=0.04 shows Fig. 9. Curve number 1 in right figure presents primary wave shape and 
curve number 2 presents waveform obtained at distance x=0.35 m (p0=150 kPa). 

Fig.9  On-axis first harmonic pressure amplitude as a function of distance from the source  and 
normalized pressure as a function of time  

4. CONCLUSIONS 

 The finite amplitude waves propagation problem for circular source was considered. 
The mathematical model, which was worked out on the basis of the KZK equation, and some 
results of numerical investigations have been presented. The numerical calculations were 
carried out using own computer program that was worked out on the basis of obtained 
mathematical model. 

The calculation accuracy depends on values of numerical parameters. The wave 
propagates in half-infinitive space but the solution of the problem is looked for inside 
bounded space. Due to sound beam diffraction this space must be suitably big for investigated 
distances from the source. The accuracy of calculations depends on space step sizes, too.  

Proposed method can be used to analyze the wave propagation for different values of 
source and medium parameters. The computer program can be easy modify for different 
pressure distributions on the circular sources. Mathematical and numerical models can be 
modify for sources without axial symmetry. 
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