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A backscattered side-scan sonar signal contains indirect information about the scattering 
surface, namely, the bottom sediment, character of bottom surface, and seafloor relief. This 
paper presents a method of automatic estimation of height of seafloor characteristic objects and 
micro relief reconstruction applying the measured shadow length. The proposed method utilises 
coefficients of two-dimensional discrete wavelet decomposition of a side-scan sonar image as the 
input to the self-organised neural network classification algorithm. The heights of seafloor 
characteristic objects were the basis for synthesis of a three-dimensional map of the bottom 
surface. The computations were conducted for data recorded in Hornsund Fjord (Spitsbergen 
Island, Svalbard Archipelago) during a habitat mapping experiment and for synthetic data. The 
verification of the proposed algorithm was made by comparison of computed results with 
calibrated video recordings.  

INTRODUCTION 

The interpretation of seafloor maps produced by side-scan sonar is subject to consideration 
in many branches of sea exploration [1]. The raw information obtained from the sonar consists of 
a two-dimensional representation of the seafloor. However, three-dimensional information 
regarding height of obstacles, ripple marks, rocks, or objects of anthropogenic origin is crucial in 
many environmental studies. For instance, knowledge of seafloor ripple mark characteristics 
(e.g., height, width, shape regularity) is useful for current intensity measurement, turbulence 
parameter estimation, and sediment movement determination. The main advantage of side-scan 
sonar techniques compared to single and multi-beam acoustical techniques is the large spatial 



resolution, on the order of centimetres. The main shortcoming of side-scan sonar imagery is that 
maps obtained this way are very dependant on sensor-to-scanned-object azimuth. 

Conventional methods of seafloor characterisation are based on image texture analysis [2]. 
However, this type of analysis does not provide exact information about seafloor elevations and 
makes it necessary to search for methods that will enable bottom height determination. The 
intuitive approach depends on measurement of shadows produced by seafloor irregularities, 
which, combined with information about side-scan sonar fish altitude, can result in an elevation 
map. The numerous shape-from-shading approaches [3] can be divided into three computational 
techniques such as minimisation, propagation, and linearization. The first is based on 
minimisation of the energy function obtained from signals scattered at the whole ensonified area. 
Propagation approaches utilise generalization of height computations made for small areas, which 
can be related to the whole considered area. The last approach is based on information about 
bottom reflectivity contained in a backscattered signal. This method requires a calibrated side-
scan sonar and, for that reason, most presented results are published using synthetic data [4]. 
Another problem in side-scan sonar imagery analysis is extraction of the object’s shadow from 
the surrounding area. This question is especially important in military systems, where suitable 
image segmentation and classification enables mine hunting [5]. Template models [6] and fuzzy 
logic and statistical models [7] base shadow extraction and provision of information about 
characteristics of seafloor objects on a shape-from-shading approach. In this paper, we present a 
novel method of side-scan sonar imagery segmentation that provides satisfying results for 
seafloor object characterisation, including ripple-marks and seafloor obstacles.  

The main motivation for this work was the analysis of acoustical measurement results 
obtained during the habitat mapping experiment conducted in Arctic Hornsund Fjord 
(Spitsbergen Island, Svalbard Archipelago) in August-September 2005, where the spatial 
distribution and biomass of macrophytobentos and seafloor morphological forms were subjects of 
investigation. The acoustical measurements were made using single beam Simrad EK-500 
echosounder operating at 120 kHz and EdgeTech DF-1000 side-scan sonar operating at 100 kHz 
and 500 kHz. Verification of acoustical measurements by underwater calibrated video recording 
and biological sampling was made by divers. Some example data from this experiment have been 
processed in this paper. 

1. ESTIMATION OF OBJECT SHADOWS 

A side-scan sonar registers the backscattered signals from rough seafloor at low grazing 
angles. The general principle of sonar operation requires that a sonar sensor be situated at an 
altitude not greater than 40% of true (horizontal) range. The geometry of shadow formation is 
presented in Fig.1, where H is altitude of sensor, R is the slant range, Hp is the obstacle or ripple 
mark height, θg is grazing angle, and S is slant range of shadow. Equations 1 and 2 quantify 
geometrical dependences between shadow length and obstacle height:  
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Fig.1 Scheme of shadow formation 

The form of sonar imagery is strongly dependent on measurement geometry, which is  
determined by grazing angles of the incident signal. Fig. 2.a shows grazing angle as a function of 
true range changing from 1 m to 100 m and as altitude achieves 50 m. It should be noticed that 
for low grazing angles in case of long range or low sensor altitude, the extent of shadow will 
increase. Fig. 2.b shows shadow extent for fixed flight altitude of 10 meters and obstacles height 
0.1 m, 0.5 m, 1.0 m, 1.5 m, and 2.0 m and horizontal distance to obstacles changing from 1 m to 
100 m. For distance of 90 meters the shadow length is 10 times larger than the height of the 
obstacle. Accordingly, the acceptable shadow length requires the operation of a sonar sensor at 
adequate altitude. 
 

Fig.2 a) Grazing angle as the function of altitude of side-scan sonar flight and range of sonar beam, b) 
shadow extent for obstacles height changing from 0.1 m to 2 m and fixed flight height of 10 meters 

The acoustical measurements in Hornsund Fjord area were conducted for variable sonar 
sensor altitude from 2 meters to 25 meters and variable slant ranges from 25 meters to 50 meters. 
Assumed ranges were derived from the depth range of the euphotic zone and experiment 
geometry (the side-scan sonars were set at a fixed depth of 2 m under the water surface). An 
example of seafloor image registered in Hornsund Fjord is shown in Fig. 3. The measurement 
area situated close to Wilczek Peninsula is known as a region of strong currents generated by 
tides and wind waves. These create ripple marks on the sandy bottom. The height of ripple marks 
does not exceed 0.4 m, verified by scaled underwater photography. The camera system was 



attached to a tripod together with two lasers that produced two points at seafloor at a fixed 
distance. The inclination of camera lenses was established at 45o. Geometrical dependencies of 
scaled photo images provided information about bottom obstacle sizes. The white rectangle 
shown in Fig.3 is an example area of ripple marks processed in this paper. 

 

 
 
Fig.3 Example of ripple marks registered in Hornsund Fjord (Spitsbergen Island). The white rectangle 

marks the area considered in data processing algorithms 
 

Processed sonar imagery was normalised by taking into consideration the following 
assumptions: 

• loss of acoustical energy due to spreading and absorption; 
• homogenous water layer; 
• known altitude of the sonar sensor; 
• the mean slope of the investigated area is 0o (horizontal). 

The loss of energy was compensated by a TVG function. The assumed constant sound speed 
provided the straight line geometry of sound propagation. The altitude of sonar sensor was 
estimated from the time of arrival of the first echo. 

2. SONAR IMAGERY SEGMENTATION 

The automatic determination of the height of seafloor surface forms is performed in three 
stages. In the first, the sonar imagery is subject to two-dimensional discrete wavelet 
decomposition. Next, the chosen coefficients of wavelet analysis are the input to a self-organised 
neural network algorithm or fuzzy logic clustering system, which produces image segmentation 
for two forms: bottom surface convexities (e.g., ripple marks) and shadows generated by these 
shapes. The third stage is an algorithm consisting of automatic, geometrical measurement of the 
length of each shadow (obtained as the result of the segmentation procedure), and computation of 
the height of each obstacle, ripple mark, or pebble using Equation 2. 



The wavelet transform breaks the signal S(x) into elements created by shifted and dilated 
versions of the basic function ψ (mother wavelet). The coefficients of the one-dimensional 
continuous wavelet transformation are given by:  
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where a is a scale parameter controlling the function spread and b is a translation parameter - 
giving the spatial or time position of the scaled wavelet. In our computations, we chose the scales 
and positions based on powers of two-so-called dyadic scales, where , and ja 2= Zj∈ kab = , 
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In particular, for image analysis, the two-dimensional digital wavelet transformation is 
suitable for sonar imagery decomposition [8]. The scheme of this procedure is shown in Fig. 4, 
where signal (image) S is divided to approximations and horizontal, vertical, and diagonal details, 
which are received by convolving the image with a low pass filter for approximations and with a 
high pass filter  for details. Presented  decomposition for  four levels  was applied for investigated 

 

 

Fig.4 Multiple level wavelet decomposition tree 

sonar imagery. The signal S can be presented as the sum of consecutive details and the one 
approximation: 
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approximation. In applied analysis, we used biorthogonal wavelets (bior3.8), which exhibit 
properties of linear phase, helpful in image decomposition and reconstruction [9].  



As an example of sonar image decomposition using the above method, we used the 
fragment of experimental area marked as a white rectangle in Fig. 3. The studied part of the 
seafloor is covered by ripple marks, the characteristics of which were measured using a video 
camera system. The main task of the described procedure was segmentation of the ripple mark 
area into ripples and shadows generated by ripples. Fig. 5 shows decomposition of the example 
image on four successive approximations, as shown in Fig. 4.  

 
 

 
 

Fig.5 Decomposition of example image into successive approximations 

Consecutive approximations produced using low-pass filtration are characterised by 
disappearing details. The best visualisation of ripple marks edges is demonstrated for the 
approximation of the second level (A2) and, for that reason, it was chosen as the first input to the 
segmentation algorithm. The next inputs were chosen from the set of wavelet decomposition  
details, graphical representations of which are shown in the next three figures (Figs. 6-8). In all 
analysed images, we can observe the disappearance of fine scale details with increasing levels of 
decomposition. The best results from the segmentation neural network algorithm were received 
for the second horizontal detail (H2), the third vertical (V3), and the third diagonal (D3) details, 
which, together with the approximation of the second level (A2), formed the input vector to the 
segmentation algorithms. 

We tested two algorithms in the segmentation procedure. The first was a fuzzy c-means 
data clustering method (fcm). In traditional K-means clustering, each point of processed data is 
the member of the one cluster. Applying fuzzy logic to the clustering procedure, we can assume 
that the same point belongs to the different clusters with different probability.  



 
 

Fig.6 Decomposition of example image into successive horizontal details 
 
 

 
 

Fig.7 Decomposition of example image into successive vertical details 



 
 

Fig.8 Decomposition of example image into successive diagonal details 

In the iteration procedure, the centres of clusters and data points are moved between clusters 
using computation results of the minimum of the global objective function, which represents the 
distance of each point from the cluster centres weighted by membership grade for each cluster 
[10]. The result of the fcm procedure is a segmented input data set. 

The other tested segmentation technique was a self-organised Kohonen’s neural network 
[11]. This type of network is built from one-dimensional input and output layers and two-
dimensional competitive layers. Each neuron from an input layer is connected with each neuron 
from an output layer. Input data are the object of competition, which determines the degree of 
neuron weight similarity to the input signal. As the result of this procedure, the “winner” neuron 
is identified as the neuron best fitted to the input signal. Results of both procedures were almost 
the same, but the computational time for the fcm algorithm was one order faster. 

4. HEIGHT ESTIMATION ALGORITHM 

The height estimation algorithm was constructed as follows: (i) extraction of samples 
belonging to shadows for each sonar image line, (ii) calculation of lengths of each shadow, (iii) 
assignation of shadow length to the proper ripple mark maximum, (iv) calculation of the ripple 
mark height based on the geometrical dependencies of measurement.  

Results of the proposed algorithm were tested for real and modelled sonar imageries. Fig. 9 
shows the consecutive steps of data processing. The top pictures are non processed real (a) and 
model (b) images. The next two images (c) and (d) are the results of a fcm segmentation 
procedure, which distinguished shadows from ripples. The bottom pictures (e) and (f) show 
results of the height estimation algorithm. The verification of algorithm correctness was made by 
comparison of obtained results with estimation of ripple mark heights made using scaled video 
recording.    



 
 

 
Fig.9 The ripple marks image produced by a) side-scan sonar data and b) image modelling; separation of 
shadows as a result of fcm segmentation procedure used for c) real data, d) model data; result of height 

estimation algorithm applied for e) real data and f) model data 

5. CONCLUSIONS 

The proposed method of seafloor irregularities height estimation gave promising results. 
The technique is based on a two-dimensional digital wavelet decomposition of sonar imagery 
inputted into a fuzzy logic clustering system or a self-organised Kohonen’s neural network. The 
result of this procedure distinguishes shadows produced by ripple marks, obstacles, pebbles, and 
rocks from surroundings. Geometrical dependencies of acoustical measurement allow object 
height estimation. Results of the presented method are useful in Hornsund Fjord experiment data 
processing.     
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