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INTRODUCTION 

Considerable studying is being given to acoustic underwater ambient noise last 50 
years. However, with rare exception, they employed systems built on the base of scalar 
sensors of the sound pressure, i.e. hydrophones. 

While investigating energetics and directivity of underwater ambient noise from sound 
pressure data acquired, the conclusions are being drawn from the potential energy density Ep 
properties. In this connection, the “sound field intensity” term used to be identified with the 
potential energy density. Since the sound field intensity is, by definition, a vector quantity, 
Refs 1, 2, and 3, a considerable amount of information on actual acoustic field, directly 
connected to the vector nature of the intensity, appears to be overlooked in scalar 
measurements. 

The intensity >=< 2)(tpI calculated from sound pressure measurements is referred to 

as a scalar intensity, in contrast to the vector intensity >=< )()( tVtpI
rr

, where  and )(tp )(tV
r

 
are instantaneous acoustic pressure and particle velocity in the medium respectively and <…> 
represents the time-averaging operation. Most modern underwater ambient noise 
investigations never consider the vector intensity unlike similar noise studies in modern 
technical aero-acoustics. 

Scalar approach holds good in particular cases of doing measurements in single plane 
traveling wave field or in the far zone of a single traveling spherical wave in which sound 
pressure and particle velocity are related as cVp ρ±= , where ρ is the density of the medium 
and c is the sound speed. 

There is an erroneous opinion that simultaneous measurements of the acoustic pressure 
and particle velocity vector at a given point in the ocean appear to be required but in the near 
field of sound sources. However, once two plane waves of the same frequency superimpose, 
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the net particle velocity vector motion is no longer longitudinal in a general way. In a given 
case, the net particle velocity vector rotates describing elliptical trajectory, i.e. there are 
vortexes to be found in a given velocity field. Consequently, by analogy with electromagnetic 
field, the term “polarization” is also applicable for acoustic fields in fluids or gases to describe 
vortex moments of the medium particles in the acoustic wave. Elliptical polarization is a 
general case of polarization, so, just in the particular case of a plane wave, there exist linear 
polarization constant all over the sound field, i.e. no vortexes are to be found in the velocity 
field. This suggests the sound field description with the scalar potential  is not 
always applicable. Refs 4, 5, and 6 call the reader’s attention to the problem of interest and 
discuss the conditions imposed on the initial wave equation, 

),,( zyxΦ
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 while modifying it to Helmholts equation. 
                                   tzyxtzyxtzyx ωΨωΦϕ sin),,(cos),,(),,,( +=                          (2) 

Insert Eq. 2 into Eq. 1 
Both  and  have two solutions. ),,( zyxΦ ),,( zyxΨ

                                   ,                       ,                           (3) 02 =+ ΦΔΦ k 02 =+ ΨΔΨ k
 this points to elliptical trajectory of the medium particles moving in the acoustic field. 

                                      )),,((cos),,( zyxtzyxA τωϕ −=                                              (4) 
 One can get linear trajectory of the medium particles by inserting Eq. 4 into Eq. 1. The 

Eq. 4 sets a condition on the solution of Eq. 3 for unidirectional Φ∇  and vectors. In 
Ref. 6 such waves are referred to as “simple” waves. The acoustic fields we are dealing with 
in experimental underwater acoustics, are by no means “simple”, that should be taken into 
account while doing studying. 

Ψ∇

Generally, the particle velocity vector V
r

 can be given as, see Ref. 4, 
                                              V = -gradФ + rotΨ,                                                           (5) 

where Ф and Ψ are scalar and vector velocity potentials. 

r

While studying acoustic fields in actual mediums, one needs a complete set of basic 
quantities available, the potential energy density Ep, the kinetic energy density Ек, the 
intensity vector I

r
, i.e. energy flux density vector or Umov vector, and the impulse flux 

density vector. These quantities are united in the impulse-energy tensor of moving fluid, 
Ref. 2. 

According to above-stated, we will name the field of research as “scalar acoustics” 
while dealing with the scalar intensity or we will name the field of research as “vector 
acoustics” while doing research employing the vector intensity. 

Vector acoustics is based on simultaneous measurements of four physical quantities at a 
given point in the sound field. The quantities are, the acoustic pressure, p(t) and three 
orthogonal components of the particle velocity vector { })(),(),()( tVtVtVtV zyx

r
 in the acoustic 

wave. 
Acoustic sensor incorporating omnidirectional sensor of the acoustic pressure p(t), i.e. 

scalar sensor, along with 3-component particle velocity sensor capable of measuring three 
orthogonal components of the particle velocity vector { })(),(),()( tVtVtVtV zyx

r
, i.e. vector 

sensor, is referred to as combined sensor, Ref. 11. 



1. CORRELATION RELATIONSHIPS 

While describing the acoustic pressure field p(t, rr ) within the framework of scalar 
approach as a zero-meanth centered random process one can use the temporal-spatial 
correlation function 

                                           { }22112121 ,(),(),,,(2 rtprtprrttR
P

rrrr = ,                             (6) 

where  and  denote two measurement points, t1r
r

2r
r

1 and t2 are two instants of measurements, 
<…> presents the spatial and temporal averaging operation. 

The choice of thermodynamic quantity, the acoustic pressure p(t, rr ) for description the 
acoustic field is motivated by the fact that the pressure is the most useful and comfortable in 
measurement. 

When central limitation theorem holds, the random process p(t, rr ) is supposed to be 
Gaussian, and, in doing so, to get a complete statistical description of scalar field p(t, rr ) one 
needs just spatial correlation function available, see Eq. 6. In steady random field p(t, rr ) the 
correlation function takes the form 
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P

rr ),,( 212 rrR
P

rrτ ,                                                 (7) 

where τ = t1 - t2, and in the given case  is solely function of t2P
R 1 - t2. At τ = 0 and 21 rr rr =  

(τ = 0, ) is named autocorrelation function, i.e. the potential energy density of random 

acoustic field at point 
2P

R 1r
r

1r
r . The function in Eq. 7 can be characterized by cross-spectral density, 

Ref. 7, 
                                  ττ τπ derrRrrfS fj
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that is the Fourier transform of  over τ. 2P
R

In homogeneous field in which the correlation function only depends on rrr rrr =− 21 , i.e. 
the difference between the measurement points cross-correlation spectral density has the form 

                                          =),;( 212 rrfS
P

rr );(2 rfS
P

r .                                                    (9) 
Isotropic field with spectral density written as Eq. 1.27 is an important particular case of 

a homogeneous field with spectral density 
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P

r = )0,(2 fS
P kr

kr)sin( ,                                            (10) 

where  is the spectral density at |)0,(2 fS
P

rr |=0, k=2πf/c is the wave number, and с is the 
sound speed. 

The basic property of isotropic field is the uniform angular distribution of the energy 
density. Isotropic field coherence function, Ref. 8, 
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For a given wave number 
0

0
2

λ
π=k , the first zero in the isotropic noise coherence 

function curve has the ordinate r equal to a half wavelength of the sound 20λ . Thus, to 
suppress the isotropic noise at a given frequency f0, the hydrophones are spaced by 20λ  in 
hydroacoustic detection systems. 

The combined receiver measures four acoustic field characteristics, the acoustic 
pressure p(t) along with three orthogonal components of the particle velocity vector 



{ })(),(),()( tVtVtVtV zyx
r

 or the particle acceleration vector )}(),(),(){( tatatata zyx
r . In each 

deployment the Cartesian axes assigned to the combined receiver employed were arranged the 
following way, z-axis was vertical downward from the surface to the bottom, and x- and y-
axes laid in the horizontal plane. In drifting combined sensor systems x-axes used to be 
directed down the near-surface wind. 

Let us suppose p(t), Vx(t), Vy(t), Vz(t), and ax(t), ay(t), az(t) to be steady ergodic processes 
with zero means. The measurements are made at a given point in space, and the acoustic field 
components data are random functions of time. 

Consider the following correlation functions in a given frequency band Δf, 
1. Autocorrelation function of the acoustic pressure p(t), 
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2. Correlation function of the particle velocity components, 
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3. Cross-correlation function, 
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For steady ergodic processes at τ = 0, the statistical expressions in Eqs. 12-14 are 
physically, 

1. Eq. 12 represents the potential energy of the field 
                                                       pp

ER == )0(2 τ .                                                   (15) 

2. Eq. 13 repesents the kinetic energy components 
                                                        Rij(τ = 0) = Eki  for i = j=x=y=z,                          (16) 
                           Rij(τ = 0) = Πij,      for i ≠ j, where Πij is the impulse component.    (17) 
3. Eq. 14 presents the orthogonal components of the energy flux density vector 

{ }zyyxxij pVIpVIpVIR ===== ,,)0(τ           where i = p, j = x,y,z.                     (18) 
Eqs. 12-14 can be generalized for complex random processes. Once p(t), Vx(t), Vy(t), 

and Vz(t) are supposed to be complex random centered processes, the following quantities can 
be written, 
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where i = p(t), j = x,y,z, and ∗ represents the complex conjunction operation. 
That is, the correlation functions from Eqs. 12-19 completely describe spatial properties 

of the acoustic field energetics at the measurement point. 



2. SPECTRAL RELATIONSHIPS 

Representation of spatial properties of the acoustic field energetics via its autospectra 
and cross-spectra provides great scope for complex acoustic fields examination, especially in 
detecting spectral components, tones as well as noise-like signals produced by various sources 
and present in underwater ambient noise. 

While using FFT, no preliminary autospectra or cross-correlation functions are required 
to calculate spectra of interest, i.e. time series of a random process are to be directly 
transformed into frequency representation. Fourier components of random functions p(t), 
Vx(t), Vy(t), and Vz(t) are determined as 
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where k is the number of transformations of time series T seconds long. 
One-side cross-spectral and autospectral densities are determined as follows 
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  where i, j = x,y,z.      (21) 

The , , ,  spectra are identical to appropriate ones 

calculated from correlation functions of Eq. 12-14, Ref. 8. 
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where ><= )(cos)()( ffSfC
iii pVpVpV ϕ  and ><= )(sin)()( ffSfQ

iii pVpVpV ϕ  are real 

functions. 
The cross-spectrum magnitude 
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The phase spectrum 
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were Re and Im denote real and imaginary parts of the complex function , 
i = x,y,z. 
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3. TYPICAL SINGLE-POINT COHERENCE FUNCTION 

Regular coherence function, Ref. 8, is used to be employed in our studies. Since 
simultaneous measurements of random functions p(t), Vx(t), Vy(t), and Vz(t) are made 



simultaneously at a given point in space, we will use the term “regular single-point coherence 
function”. 

The following coherence functions will be employed, 
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The coherence function is similar to quadrature of the normalized correlation function at 
a given frequency. Physically the coherence function in Eq. 25 is the quadrature of 
normalized acoustic field intensity at a given frequency. It looks more convenient and carries 
more information than the correlation function does; this being so, the coherence function will 
be mostly employed while doing noise analysis in vector measurements, other than the 
coherent function. 

As seen from Eqs. 22-26, in the case of determined traveling wave in x-axis direction, 
= 1, since )(2 f

xpVγ )( f
xpVϕ = 0°. In doing so, the p(t) and Vx(t) processes are supposed to be 

coherent. In an event of standing wave in x-direction, the p(t) and Vx(t) processes are coherent 
as well and = 1, since )(2 f

xpVγ )( f
xpVϕ = 90°. 

The coherence function )( f
xpVγ = 0° when 0)(sin)(cos >=>=<< ff

xx pVpV ϕϕ ; this 
thing takes place for out-of-phase, i.e. incoherent p(t) and Vx(t) processes only. 

The coherence function is less than unit and greater than zero due to the following 
reasons, 

 inter-relationship between random processes p(t) and Vx(t) are not proportional; 
 the data acquired are affected by external noise; 
According to Virial Theorem, see Ref. 2, proportional relationships between p(t) and 

Vx(t) are to be held in the mean in the acoustic field. In doing so, while having 0≤ ≤1, 
one can conclude a coherent component contribution to the ambient noise acoustic field. 
Additional information on the nature of the coherent component can be inferred from the 
shape of the phase spectrum 

)(2 f
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ipVϕ , Eq. 24. 

Using the notion of coherent output power Scoh(f) as a part of the acoustic field power 
related to linear proportion between p(t) and Vx(t), one can write  
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Thus, the remained spectrum related to incoherent diffusive component of the acoustic 
field will take a shape 
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2

, fSffS
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for a given direction i = x,y,z. 

4. SPECTRAL ANALYSIS IN VECTOR ACOUSTICS 

A single four-component combined receiver provides simultaneous time series of the 
acoustic pressure p(t) and three orthogonal components of the particle velocity vector 

{ )(),(),()( tVtVtVtV zyx }r
 at a given point in space. In the deployment time series p(t), Vx(t), 



Vy(t), and Vz(t) chosen to be processed satisfied the requirements of homogeneity, stability, 
ergodicity and were centered random processes. The combined receiver axes were used to be 
oriented in physically important directions within the ocean waveguide, i.e. x- and y-axes lay 
in the horizontal plane with the x-axis directed down the average wind speed vector, and z-
axis directed vertically down from the surface to the bottom. The specific arrangement of 
Cartesian axes assigned to the combined receiver enables to estimate properties of the 
ambient noise field anisotropy using spectral characteristics available. 

Statistical analysis here is based on the following spectra, 
1. , the acoustic pressure autospectrum from the output of a single unidirectional 

hydrophone incorporated in the combined receiver; 
)(2 fS

P

2. , , , autospectra of orthogonal particle velocity components 

from the vector sensor output; 
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3. | |, | |, | |, magnitudes of the cross spectra along with 

corresponding phase spectra Δϕ

)( fS
xPV )( fS

yPV )( fS
zPV

x(f), Δϕy(f), Δϕz(f), of random processes p(t), Vx(t), Vy(t), and 
Vz(t); 

4. , , , the coherence functions related to orthogonal x-, y-, 
and z-axes; 
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5. | |, | |, | |, cross-spectral magnitudes with related phase 

spectra Δϕ
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x(t), Vy(t), Vz(t); 
In fact, the spectra grouped together in 2-4 represent the angular spectra in orthogonal 

directions x, y, and z. Combining the spectra from groups 2-4, one can calculate 3-component 
angular spectrum in the “intensity-frequency-angle” coordinate system, or the angular phase 
spectrum in the “phase difference-frequency-angle” coordinate system. Such angular spectra 
provide the complete representation of anisotropic and diffusive properties of the ambient 
noise as well as characteristics of both directivity and energetics of the signals to be found 
against the background noise. 

Since the ambient noise diffusive component energy flux density must be equal to nil, 
one can separate the net noise field energy density into the energy density involved in the 
energy transport within the ocean waveguide and the energy density “frozen” in the 
waveguide. As the experiment evidences, over the entire 6 to 1000 Hz frequency band under 
investigation, a large share of the dynamic ambient noise energy density contributes to the 
diffusive field, whereas it is not necessarily so for distant shipping noise. The challenge of 
extreme importance now is to eliminate the diffusive contribution from the net energy density 
while doing spectral estimation of the coherent component of the ambient noise or a signal 
mixed with additive noise. An attempt to develop such technique for spectral estimation using 
the acoustic pressure measurements has been made by Pisarenko, see Ref. 9, using harmonic 
expansion technique. 

Pisarenko technique like any other innovative method of spectral estimation, Ref. 9, 
makes an attempt to better spectral resolution and signal detection comparatively to Fast 
Fourier Transform (FFT) technique. In fact, this is an attempt to estimate a share of additive 
uncorrelated noise using autocorrelation function and subsequent subtraction of the resultant 
share from the net energy density in the process calculated from the acoustic pressure data. 
However, the Pisarenko technique lacks rigorous criterion to determine the share of interest 
that can result in excessive estimation of the noise compensation. Nevertheless, such 



technique appears to be prospective for it permits to find out the spectral structure of the 
modified correlation function supposed to be a sum of tones. Fig.1 shows normalized spectra 
of two 3- and 4-Hz tones against the background of additive white noise with dispersion of 
10% of the signal power. Spectral estimation was made by using Blackman-Tiuckey 
technique (Fig.1,a), by autoregressive technique (Fig.1,b), and by Pisarenko technique 
(Fig.1,c). As seen from Fig.1, the Pisarenko technique has the best resolution providing two 
tones as delta functions against the white noise background, and yet the requirements imposed 
upon calculations related to most innovative techniques employed in spectral estimations are 
more complicated than that in FFT-based data processing offering a little promise for 
employment in real time analysis systems, though may be prospective for possible future 
research, see Refs. 7 and 9. 

 
Fig.1 Three spectral estimates made for superposition of 3- and 4-Hz tones, and additive white noise, 

the noise dispersion is 10% of the signal power, a)  Blackman-Tiuckey technique application, 
b) autoregressive estimate, and c) estimate made by harmonic expansion offered by Pisarenko. From 

Ref. 9 

While doing FFT-based processing of combined receiver data to obtain spectral 
estimates of the ambient noise energy flux density, they never have the diffusive ambient 
noise contribution as directly follows from the definition of the energy flux density vector as a 



physical quantity. That essentially betters signal detection against the ambient noise 
background while imposing no any additional requirement on FFT-based data procession. 

 
Fig.2 The coherence functions related to the orthogonal x-, y-, and z-directions. Deep open ocean, 
depth of the measurement point 150 m, wind speed 10 m/s, exponent averaging over 30 s, band of 

analysis 1.2 Hz. See explanations in the text 

By way of illustration, Figs.2 and 3 show the coherence function and phase spectra of 
underwater ambient noise in the deep ocean. As follows from these plots, the underwater 
ambient noise field in the deep ocean is anisotropic in both horizontal and vertical planes. The 
extent of anisotropy is a function of frequency. The relationship between the coherent and 



diffusive components of the total field is also frequency-dependent function. The 622-Hz tone 
is clearly visible against the background of virtually completely diffusive field of the dynamic 
noise, Fig.2,b. In the horizontal plane anisotropic noise produced by distant shipping is clearly 
visible up to 300 Hz, Fig.2,a,b, whereas it is not found in the vertical spectrum , 
Fig.2,c. Directivity of coherent fluxes is clearly seen from the phase spectra 

)(2 f
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)( fxyϕΔ , 
)( fxzϕΔ , and )( fyzϕΔ , Fig.3. 

 
Fig.3 Phase spectra related to Fig.2. The conditions are the same as in Fig.2 



As seen from Eqs.22-25, 28 and Figs.2 and 3, the magnitude of the diffusive field 
energy density dictates the shape of the coherence function, whereas never affects the phase 
spectra. 

At the frequencies up to 300 Hz the distant shipping intensity, see Figs.2 and 3, varies 
over the deployment region, whereas in the 300 to 800 Hz frequency band of the dynamic 
noise the properties of the cross spectra, the coherence functions, and the phase spectra 
remain the same mostly depending on meteorological conditions and the depth of the 
measurement point. In the vertical plane between 300 and 800 Hz Figs.2 and 3 evidence an 
existence of the noise energy flux with nonzero coherence function ≈0.3-0.4; whereas 
in the horizontal plane in x-direction there is another dynamic noise energy flux and in y-
direction the diffusive noise field is observed. Using general properties of underwater ambient 
noise, one can perfect mathematical and computational aspects of processing data collected by 
passive observation means. 

)(2 f
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5. CONCLUSIONS 

On the base of properties of four random functions being the four acoustic field 
components, the acoustic pressure p(t) and three orthogonal components of the particle 
velocity vector )(tV

r { })(),(),( tVtVtV zyx  each supposed to be a homogeneous, stable, ergodic 
and centered time-function, the author have employed the FFT technique to estimate spectral 
and cross-spectral characteristics of the four components of the acoustic field. 

The cross-spectral estimates are, in fact, directional characteristics of the acoustic field 
energetics. Having in hand directional spectral characteristics of the energetics related to 
orthogonal x-, y-, and z-directions, one can calculate the frequency-angular energy spectrum 
in each given direction that provides the complete spatial description of the ambient noise-
and-signal acoustic field energetics. 

The following vector properties of the ambient noise are of great importance, 
-once the time shift is zero, the acoustic field energy flux density is equal to the cross-

correlation function of the acoustic pressure and the particle velocity vector; 
-the diffusive field energy flux density is universal nil; 
These vector properties of the acoustic field can be successfully used in the 

development of innovative progressive techniques capable of estimating spectral 
characteristics of the ambient noise energetics, and most effective methods for signal 
detection against the noise background. 
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