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The article presents the principle of operation of the beamformer of sonar with a cylin-
drical array. It demonstrates that a modified beamformer can be used for beam electronic 
stabilization. The paper presents the algorithm of a digital beamformer used to ensure that 
the beam’s axis is maintained in a horizontal plane when the ship’s pitch and roll are known. 
Finally, the article gives an overview of the technical problems of electronic beam deflection. 

INTRODUCTION 

As the ship’s hull moves on the waves, sonar beams change their position in space. Nar-
row beam sonars require beam stabilization, a solution to ensure that beam position is inde-
pendent of the ship’s movements. There are two basic stabilization methods, antenna position 
stabilization and beam electronic stabilization. In both methods the momentary position of 
the ship’s hull with the sonar antenna must be known. Gyro-horizon and gyro-compass are 
used to measure the angles between the hull, the horizontal plane and the north. Gyro signals 
are processed and used either in an automation system, which compensates antenna tilts or in 
a specialist beamformer, which causes the beam to deflect and/or rotate. 

The article presents the principle of operation of an electronic stabilization beamformer 
with a cylindrical antenna. The beamformer compensates for the ship’s pitch and roll, and the 
rotation caused by yawing and change of course is compensated for in sonar imaging. 

 



1. PRINCIPLE OF OPERATION OF A BEAMFORMER WITH A CYLINDRICAL 
ANTENNA  

The cylindrical antenna is built of M number of columns, spaced evenly every φ degrees 
on the lateral surface of an R ray cylinder. The column is made up of P transducers, whose 
geometric centres of the radiant surface are spaced at l. Fig. 1 shows simplified antenna 
geometry. 
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Fig.1 Geometry of cylindrical antenna 

Let us assume that there is a very long distance r between the source of the acoustic 
wave and the centre of the cylinder, and the angles θ and ϕ define the position. The source’s 
coordinates in rectangular coordinates are equal to: 

ϕθθ sincossin rzryrx ===      (1) 
Let us consider a transducer lying on the cylinder’s surface with the following 

coordinates of the centre: 
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The distance d between the source and the centre of the transducer selected is: 
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The coordinates of the antenna’s central transducer are equal to x0=0, y0=R, z0=0, and 
the distance d0 between the source and the transducer’s centre is equal to: 
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Formulas (3) and (4) give us the difference of the squares of these distances: 
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Because , and following the substitutions, we obtain: 222 Ryx aa =+
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Next, using the known trigonometric relation, we obtain: 
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For a small difference in the distances Δd=d-d0, the above difference of the distance 
squares can be expressed in a simplified form as: 
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When the relation is inserted into formula (6) and following the simplification, we 

obtain: 
rmlmlnRd 2/)(sin)]cos([cos 2+−−−≅ ϕφθθΔ      (9) 

Where the distance between the source and antenna grows to infinity, the last term goes 
to zero and finally we obtain: 
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Let us now assume that the source is emitting a sinusoidal spherical wave with pulsation 
ω0. The wave number is then equal to k=ω0/c0 and the acoustic pressure of a wave falling on 
the centre of the surface of the transducer in question can be written as: 
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where Q is the constant depending on the pressure of the wave emitted by the source.  
The first term of the above formula describes the sinusoidal wave falling on the centre 

of the central transducer. Wave pressure will be determined as: 
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Therefore, we obtain: 
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The pressure phase of a wave falling on the transducer in question is shifted compared 
to the phase of the wave falling on the central transducer. The size of the shift is the 
exponential function exponent and is obtained by inserting expression (10) into the above 
formula: 
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The above formula shows an important feature of the phase shift: phase shift in connec-
tion with angle θ (in the horizontal plane) is solely dependent on the angular position of the 
transducer in the horizontal plane, and phase shift in connection with angle ϕ depends solely 
on the position of the transducer in the vertical plane. In other words, all transducers aligned 
in a single column have the same phase shift as for angle θ, and all transducers in a single row 
have identical phase shift for angle ϕ. Consequently, beams can be controlled independently 
in the horizontal and vertical plane. By determining the electric signal at transducer output 
number n m as s(n,m) we obtain 1: 
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Both formulas describe the phase shift of a sinusoidal signal with frequency f0=ω0/2π, 
in connection with wave incidence direction and transducer number.  

To generate a beam at a specific angle, phase compensation must be conducted [2]. In 
beamformers with cylindrical antennas, beam axes in the horizontal plane are perpendicular to 
                                                 
1 We neglect the effect of finite transducer aperture. 

 



the surface of transducers in the subsequent antenna columns. Phase compensation in the 
horizontal plane comes down to a multiplication of signals s(n,m) by coefficients w(n) equal 
to: 

)]cos(1[)( φnjkRenw −=          (18) 
In the vertical plane phase compensation is performed for a specific deflection angle ϕ0. 

Coefficients v(m), by which signal s(n,m) is multiplied, have the following form: 
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The algorithm for determining the signal at the output of a deflected beam can be 
written as: 
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The above algorithm can be used for beam stabilization. 

2. GEOMETRIC RELATIONS IN THE BEAM STABILIZATION SYSTEM  

In electronic beam stabilization the idea is to continuously bring the axes of the beams 
to the horizontal plane. To achieve this, beamformer coefficient values v(m) are changed. The 
coefficients are calculated as part of sonar processes based on gyro-horizon signals. The gyro-
-horizon generates signals, which are proportional to two angles, i.e.: 

• angle α between the ship’s axis and the axis’ vertical projection on the horizontal 
plane, 

• angle β, which is the angle between the ship’s transverse axis, the projection of the 
axis across a plane perpendicular to the deck onto the vertical plane. 

In other words, angle α lies in the vertical plane, and angle β - in the plane perpendicular 
to the deck. The situation is illustrated in Fig.2. 
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Fig.2 Angles of antenna tilt towards the horizontal plane 

The position of axes x,y,z determines the position of the horizontal plane x,y. The system 
of axes x’,y’,z’ is related to the ship and plane x’,y’ is the plane of the deck. The axis of the 
cylindrical antenna is parallel to axis z’. The antenna columns are in a fixed position towards 
x’,y’,z’ and change the position as the ship’s deck tilts compared to x,y,z. Angles α and β are 
known, because these values are measured with the gyro-horizon. As we said earlier, we 

 



assume that the ship does not rotate. Sonar beams rotation is compensated for after the beam-
former in sonar imaging. 

Our task is to identify the relation between angles α and β and phase shifts in the beam-
former, which deflects beams in the vertical plane, i.e. in the plane traversing axis z’. To that 
end, the coordinates of antenna elements should be expressed using coordinates x,y,z. 

Because of the significance of angles α and β, moving the coordinates x’,y’,z’ to a new 
position should be done in two stages: 

• to rotate the coordinates x’,y’,z’ against axis y expressed with angle α, 
• to rotate the new system against the new position of axis x’. 

By following this rule, coordinates x,y,z depend on coordinates x’,y’,z’ as follows: 
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where matrix coefficients are direction cosines of angles α, β and γ which result from the 
above rotations. The brackets show the sequence of matrix multiplication. Hence we obtain: 
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When the second matrix is multiplied by the vector we obtain: 
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and then, finally  
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The above relations are the relations we sought between the coordinates of both 
coordinate systems. 

Let the axis of the cylindrical antenna beam be deflected from axis x’ by angle δ. The 
axis equation has the following form: 

x’=Rcosδ  y’=Rsinδ z’=0        (25) 
In coordinates x,y,z we will obtain the beam axis equation by inserting the above relations 

into equation (24). Hence we obtain: 
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It is an equation of a straight line going through the centre of a coordinate system, parallel 
to a certain vector R, whose direction cosines are equal to: 
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The beam’s axis can be brought to the horizontal plane by compensating for phase ϕ, 
when the phase meets the following equation: 
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where l’, m’, n’ are direction cosines of the beam’s axis in the horizontal plane. 

The cosines have the following values:  
l’=cosδ  m’=sinδ n’=0       (29) 
Hence we obtain: 
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Angle ϕ0 determined from the equation should be inserted into formula (19) to allow the 
determination of coefficients v(m), to be followed by mathematical operations based on beam-
former algorithm (20). As a result, the beam’s axis will tilt in relation to the cylindrical 
antenna’s axis and the beam’s axis will be positioned on the horizontal plane. Consequently, 
the beam will be stabilized, which is the objective of the system in question. 

3. TECHNICAL PROBLEMS OF BEAM STABILIZATION  

Cylindrical antenna sonars fall into two groups, i.e. sonars that generate beams deflected 
both in the horizontal and vertical plane and those generating beams deflected in the horizon-
tal plane only. In the first case there is no need to significantly extend the sonar to introduce 
electronic beam stabilization. Stabilization is achieved by an ongoing adjustment of coeffi-
cients v(m), while the other operations remain unchanged. The receiver’s analogue electronic 
systems do not require any extensions either. Electronic beam stabilization in these sonars is 
the best solution, both from a technical and economic perspective. 

Before electronic beam stabilization can be used in sonars generating beams in the hori-
zontal plane only, the receivers must be significantly extended and digital beamformer proc-
essing capacity increased several times. Here is an example. Let us assume that the sonar’s 
receiver generates W=60 beams 60 wide in the horizontal plane. Consequently, the cylindrical 
antenna is built of W transducer columns. To generate one beam 2N+1=21 antenna columns 
must be used. To determine W beams we must perform W(2N+1) multiplications for one 
complex sample in each beam. In this example, the number of multiplications is 1260. If the 
width of the beam in the horizontal plane is also equal to 60, the number of transducers in 
each antenna column is also 2M+1=21. To stabilize the beam in the vertical plane 
W(2N+1)(2M+1) multiplications of complex numbers would have to be performed. The proc-
essor must be 2M times more powerful in the sonar with no electronic beam stabilization. In 
the example in question the processing power should increase 20 times. In addition, the 
receiver’s analogue part needs extending, because the number of channels must increase 20 
times as well. As a result, the sonar’s design can generate beams deflected in the horizontal 
and vertical plane, which makes it high-end sonar, part of the first group of sonars. 

In summary [1], the decision to use electronic beam stabilization in horizontal beam 
sonars must be weighed against a possibly simpler and cheaper solution, i.e. mechanical 
antenna stabilization. 
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