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       The purpose of this paper is to present examples of the application of the Mathieu 
functions to solving problems in the field of acoustics, mainly underwater acoustics.  
The Mathieu functions have application to aspects of waves related to ellipses and elliptical 
cylinders: elliptical membrane vibration, vibration of water in elliptical containers, etc. The 
reason why theses functions have attracted little attention so far is mainly the complexity of 
the issues they involve. Among all the other functions occurring during the separation of the 
variables in a wave equation (with partial derivatives) in various co-ordinate systems, the 
Mathieu functions were the first non-hypergeometric ones. Hence, there are difficulties in the 
theory of these functions, as well as the calculations involved. 
The reflection of a sound-wave is studied at an inhomogeneous layer with parallel surfaces 
separating two  homogeneous semi-infinite media having different indices. 
 

 INTRODUCTION 
 
       Special functions used in the theoretical acoustics were introduced as a result of the 
search for the solutions of practical problems. In the process of mathematical description of 
an acoustical phenomena scientists apply mathematical methods, which may facilitate 
physical interpretation of the results obtained. Mathieu introduced certain functions, which 
were then given his name, in relation to the problem of vibrations of an elliptically-shaped 
membrane. The acoustic waves propagating in the fluid must satisfy the wave equation [7]: 
                                                       ( ) 0,)( 22 =+∇ yxVk                                                           (1)            
where    is two-dimensional Laplace operator, and k is the wave number. 2∇
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after moving on to elliptical co-ordinates ),( ηξ , assumes the form [8, 9, 10]: 
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where: 
          ,   e – ellipsis excentricity, kek =' )cos( ηξ ieiyx +=+  and const=η  equation of 
concentric ellipses, const=ξ  equation of concentric hyperbolas. 
A solution of equation (3) may be written in the form:         
 

                                                         ( ) ( ) ( )ηξηξ HV ⋅Ξ=,                                                       (4)                         
 
Substituting (4) to equation (3), we will obtain, (after separating the variables): 
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After equating to the constant of both sides, we will obtain the following Mathieu equation:  
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and modified Mathieu equation:  
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where:     a  is a constant  
          is a function only of variableΞ ξ , whereas 

               H    is a function only of variableη . 
Wave equation (3) has been divided into two differential equations (6) and (7), with 
periodical parameters. Function H, which offers a solution of the wave equation, is a 
periodical function of η , (period π or 2π). The solutions of equations (6) and (7) are called 
the Mathieu functions [8]. Functions Ξ  and H  satisfy equations (8) and (9) after changingξ  
andη into x.                                       
Mathieu’s differential equation may be written as [11]: 
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where:  b, s – constants  (whereas the values of parameter b are functions of s )  
When x is changed into ix, this equation (8) assumes the form of the modified Mathieu 
equation: 
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Their solutions may be written in various forms, depending on parameters b and s. They are 
four types of periodical solutions of  (8) Mathieu equation [11]: 

• the even solutions:  
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• the odd solutions: 
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where r is the total number and  Dek , Dok are coefficients. 
Three phenomena served as examples of application of the Mathieu functions to solve 
selected problems in acoustics: the propagation of acoustic plane wave in an acoustically non-
homogenous medium, the vibrations of water in a lake of an elliptical outline and the problem 
of the plane acoustic wave propagation in a liquid medium in which there is an obstacle – an  
elliptically shaped cylinder [8].  
 

1. THE PROPAGATION OF ACOUSTIC PLANE WAVE IN AN ACOUSTICALLY 
NON-HOMOGENOUS MEDIUM 

 
       Macroscopic non-homogeneity of a medium caused by a difference in temperature may 
be expressed in the form of the wave equation. This equation has one parameter 
characterizing the medium: velocity of wave propagation c. This velocity is a function of 
temperature, whereas the medium is acoustically heterogeneous.  
       Propagation of an acoustic plane wave in a liquid medium with a temperature gradient is 
found in practice quite frequently. This subject was given intense research in Great Britain, 
which has always been a maritime power [12]. Acoustic signalling is a significant aspect of 
navigation, as acoustic signals carry information on the macrostructure of the sea. 
       An acoustically heterogeneous medium may be conventionally divided into layers inside 
which the temperature is a function of (distance) height. In research of waves spreading over 
the sea, the medium is assumed to be layered. 
The phenomenon of acoustic wave propagation in a non-homogenous medium is described by 
a differential equation of variable coefficients. Solving equations of this type often poses 
significant difficulties. 

 
2. WAVE REFLECTION AND TRANSMISSION IN A LUQUID MEDIUM  

WITH A TEMTERATURE GRADIENT 
                                                     
Acoustic plane wave propagates in a liquid medium having variable wave number k (i.e. 

in a medium with a temperature gradient) which separates two media of wave numbers: 
k1 = const and k2 = const (i.e. of constant temperatures), whereas k1 ≠ k2.  



The media are linked with an intermediary layer, with coefficient k (x) changing constantly 
and monotonically from k1 to k2. 
       To calculate the reflection and transmission of a wave in the above-described conditions, 
an equation must be written for acoustic potential Φ(x) (assuming that it is a one-dimensional 
problem) and variable wave number k(x), i.e. the Helmholtz equation with a variable wave 
number. 
       The Helmholtz equation with a variable wave number may be solved using various 
methods. The problem has been formulated and solved by Brekhovskih [1-3 ]. For later on M. 
Jessel, [6] and G. Canevet G. Extremet [4] showed that by means of appropriate change  of 
function, Helmholtz’s variable-coefficient equation is split up into a pair of equations of the 
same type, but with constant coefficients in which there appear “virtual sources” containing 
the unknown field. By using Green’s function in expressing the solution, these equations can 
be transformed into an integro-differential equation for the field  and an integral equation for 
the virtual sources. The latter equation was solved numerically and hence the coefficient of 
reflection was deducted.  

Our suggestion is follow [5]: also, a variable wave number, i.e. a k(x) function may be 
applied, which – having satisfied the aforesaid assumptions – may result in a differential 
equation with a known solution, i.e. the Mathieu equation [8]. 
 

3. MATHEMATICAL DESCRIPTION OF THE PROBLEM 
 

       In a liquid medium with a temperature gradient from T1 to T2, a plane sinusoidal wave 
propagates vertically to the boundary between the media, over distance d, with wave numbers, 
respectively: in medium E1, E, E2:  
      E1;  for      x<0               k(x) =  k1 = const,  
      E ;   for 0<x<d                        k(x  )≠  const  
      E2;  for      x>d                k(x) =  k2 = const. 
Function k(x) changes from k1 to k2 constantly and monotonically. The equation for acoustic 
potential Φ and variable wave number k(x) obtains the form (a one-dimensional problem): 
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 where Φ (x) is an acoustic potential in medium E. Assuming that k2(x) has got the form: 
 
                         k2 (x) = b – s cos2 (x)               ⇒ xsbxk 2cos)( −=                                  (15)                         
where:  b, s – constant, equation (14) is the Mathieu equation. Thus, known functions may be 
applied to solve the problem. Dependence (15) satisfies the requirements of continuity of the 
function and the derivatives (first and second) at the boundary between the media.  
We use these dependencies:      
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  where:  c(x) is the sound velocity in the fluid. In the gaseous media we have: 
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while in the water  the function c(x) takes the intricate form [7]. 
Function  k(x) is periodical, with period π, whereas from the physical interpretation viewpoint 

this function is considered in the interval from 0 to 
2
π , i.e. in the interval in which it changes 

from k1 to k2. Thus:                                      
                                                k1 = k(0) = sb −        when b>s                            ( 18a)                         

                                                               k2 = k(
2
π ) = b                                                   (18b) 

Hence, constants b and s may be expressed with wave numbers k1 and k2. Consequently: 
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If wave numbers k1 and k2 for the media are known from the physical conditions, constants b 
and s appearing in equation Mathieu may be determined using (18a, 18b, 18c). 
       For a plane sinusoidal wave spreading vertically to the boundary between the media, its 
propagation is described using three equations: 

• in the medium of a wave number k1: 
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where k1  and Φ2 are the wave number and acoustic potential in medium E1.                                                    
• in the medium of a variable wave number k(x): 
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where k(x)  and Φ(x) are the wave number and acoustic potential in medium E. This equation 
has been named the Mathieu equation and the solution may be presented using the Mathieu 
function. 

• in the medium with a wave number k2: 
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where k2  and Φ2 are the wave number and acoustic potential in medium E2.    
       Curve (15) assumed to link the two media may be applied in the cases when it 
satisfactorily approximates the phenomenon in question, i.e. defines the temperature 
distribution in a given medium. In this way, the wave reflection coefficient may be proved to 
exist and be estimated and its dependence on the incident wave parameters may be studied. 
 

4. SOLUTION OF THE PROBLEM 
 
       Solutions of equations (19)  and (21) are known [5, 9], and they define the acoustic field 
in the media of wave numbers k1 and k2 , respectively: 
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where  T  is constant. 
A solution of the Mathieu equation adopts the form [11]: 
 

                                                       ),(),( sxBSesxASo mm +=Φ                                             (24) 
 
where  Som , Sem  are the Mathieu functions (10) and (12),  m – order.  
Constants R, A, B, T are determined from the boundary conditions at the boundary between 
the media, the continuity of acoustic pressure, and the vibration speed for x = 0 and  x = d.  
Consequently, for x=0, the boundary conditions are: 
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 where ρ1 = ρ (0) = ρ,  and for x = d, analogously, they are: 
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where  ρ2 = ρ (d). The ρ1, ρ, and ρ2 appearing in the boundary conditions are respective 
densities of the media: E1 E, and E2. Constant R is the reflection coefficient at the boundary 
between the media with wave numbers k1 and k(x) and T is the constant which is the 
transmission coefficient at the boundary of media E and E2. 
       Finally, the boundary conditions (25) and (26) are a system of four equations with four 
unknowns: R, A, B, T, including the wave reflection coefficient R at the boundary between the 
media in the situation analysed. For x =0 , equations (22) and (24) lead to the results: 
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and for the derivatives we obtain: 
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Analogously for  x=d equations (23) and (24) lead to the results: 
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and for the derivatives we obtain: 



                                                 ( ) ( sdBSesdASo
dx
d

mm
dx

,, '' +=
Φ

=

)                                          (33) 

                                                               dik

dx

Teik
dx

d
2

2
2 −

=

−=
Φ                                               (34)  

 
The equation (25) and  (26) adopts the form: 
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It is necessary taking into account that, for x = 0 , ρ 1= ρ (0), while  for x = d,  ρ (d)= ρ 2 .       
       The equations (35) are used to calculate constant R , i.e. the reflection coefficient at the 
boundary between the media with wave numbers k1 and k(x)(and constant T, i.e. the 
transmission coefficient at the boundary between the media with wave numbers k(x) and k2 ). 
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where: 
ε  = So’m(d, s) Sem(0, s) 
ϑ  = Som(0, s) Se’m(d, s)                                                                             

                                                           τ  = Som(d, s) Sem(0, s)                                               (37) 
σ  = So’m(0, s) Sem(d, s) 

 
5. DISCUSSION 

 
       The foregoing considerations are different from the ones presented in the literature [1-3, 
4,6, 10] taking advantage of the same method as the one used here. The above-described 
method of solving the problem of wave propagation in a non-homogeneous medium, in the 
conditions described above, makes it possible to present the results in an analytic form using 
the Mathieu function. The case in question is a heterogeneous medium, of variable wave 
number k(x), linking two homogeneous media of constant wave numbers k1 and k2 . 
Curve (15), adopted to depict the change in the wave number depending on the temperature in 
a heterogeneous medium is a sample picture of temperature distribution.  
 

6. EXAMPLES OF OTHER APPLICATIONS OF THE MATHIEU FUNCTION 
 
1. Analysis of the vibrations of water in a lake of an elliptical outline [8]. 
Assumptions: 

- movements of water in a lake of constant depth d is stationary all over the plane; 
- dependence of the vertical movement of water particles ξ on time is e iωt   
- water particle movement ξ is slight. 

The differential equation of movement is: 



                                                        ( ) 0,)( 22 =+∇ yxk ξ                                                        (38) 
 
and in elliptical co-ordinates is (3), whereas the solution to be found is a combination of the 
Mathieu functions which represent the deformation of water surface. Function ξ represents the 
configuration of water surface at time t > 0. The constants occurring in the solution are 
determined from the initial conditions at t=0. 

 
2. Analysis of the problem of the plane acoustic wave propagation in a liquid medium in 
which there is an obstacle – an  elliptically shaped cylinder [8].  
If there is an obstacle on the way of a spreading acoustic wave, acoustic scattering occurs. It is 
assumed that the obstacle, e.g. an elliptically-shaped cylinder, is many times longer than the 
larger axis of the ellipsis. The axis of a long elliptical cylinder of an elliptical cross-section is 
perpendicular to the plane of the page. The medium flows round the elliptical cylinder with 
velocity u in the direction forming angle v with the larger axis of the cylinder. In this case, 
solving the diffraction problem requires the use of elliptical co-ordinates, whereas the solution 
of the wave equation in such co-ordinates includes the Mathieu functions.  

 
7. CONCLUSION 

 
     To recapitulate, the applications of the Mathieu function to solving underwater acoustic 
problems may be divided into two main groups: 

1. Solutions of the two-dimensional wave equation written using elliptical co-ordinates;  
2. Solutions of boundary conditions problems. 

The majority of the applications of the Mathieu function falls into the first group of the 
problems related to the wave equation. 
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