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The paper presents the results of the theoretical investigations of the finite amplitude 
plane wave propagation problem. The case of harmonic plane pressure wave of megahertz 
frequency propagating in water is discussed. Mathematical model and some results of 
numerical calculations are shown. The nonlinear acoustics equation was considered to build 
the mathematical model. To solve the problem numerically the finite-difference method was 
applied. The influence of discrete model parameters on the numerical calculations accuracy 
was studied. The results of computer calculations for different values of physical parameters 
were also analyzed.  

INTRODUCTION 

The nonlinear wave propagation problem is described basing on continuity, motion and 
state equations. The system of these equations is converted to the nonlinear partial differential 
equation called the nonlinear acoustics equation [1, 2, 3]. This equation has not exact 
analytical solution. Moreover it has rather complicated form. Therefore the equations which 
have easier form are used to solve the finite amplitude wave propagation problem in practice. 
For example, using the quasi-optical assumption the nonlinear acoustics equation is converted 
to the KZK equation [2, 3]. The Burgers equation is often used to analyze the plane wave 
propagation. This equation is obtain from the KZK equation assuming that propagated wave 
is plane one. In general case the nonlinear acoustics equation is solved numerically. The 
finite-difference method and finite-element method can be used to solve this equation 
numerically [1].  

Analysis of the pressure wave along propagating axis is possible using the nonlinear 
acoustics equation in one dimensional case. The main aim of this paper was numerical 
analysis of the finite amplitude wave propagation problem modeled using this equation. The 
finite-difference method was used to solve the problem numerically. The convergence and 
accuracy of obtained discrete model are discussed. Additionally some results of numerical 
calculations obtained for different values of physical parameters are presented.  



1. MATHEMATICAL MODEL 

We assume that the finite amplitude plane wave is propagated in x axis direction. 
Mathematical model of this problem is built on the basis on the partial differential equation: 
  

2

22

4
000

2
0

2

2

2
0

'''1'
t
p

ct
p

c
b

t
p

c
p

∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

Δ+
∂
∂

−Δ
ρ
ε

ρ
      (1) 

 
were:  p’=p-p0 - acoustic pressure,  
          c0 - speed of sound,  
          ρ0 - medium density at rest,  
          b - dissipation coefficient of the medium,  
          ε - nonlinear coefficient, 
          ∆ - Laplace operator. 
Equation (1) is obtained from the nonlinear acoustics equation assuming plane wave 
propagation in water. 

The primary pressure wave is given as follows  
 

)2sin(),0(' 0 ftptxp π−== .         (2) 
 

were f denote primary wave frequency. Additionally we assume that function p’=p’(x,t) is 
periodic function of the coordinate t. 
When 
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we may rewrite Eq. (1) as follows:  
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To solve the problem numerically the derivative 2
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Finally Eq. (3) with boundary condition (2) is solved for fixed distances and fixed time 
interval, i.e. inside domain ]},0[],,0[:),{( maxmax TtXxtxD ∈∈= . 

2. NUMERICAL SOLUTION 

To solve Eq. (3) numerically function p’(x,t) is discretized in both distance x and time t. 
Now let n designed the nth step in the x direction and m designed the mth time step. Then the 
net is defined in following way 
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where m=0,1,…,Nt and n=0,1,…,Nx-1. We assume constant dependence between steps ∆x and 
∆t: .  tcx Δ=Δ 0
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were ,  Eq. (3) may be written in following way: ),(' mn
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where: δ - difference operator of the Laplace operator,  

            A - difference operator of  2
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Using difference equation (4) and knowing values of pressure for t<tm we can calculate 
pressure for t=tm+1 for all distances from x=0 to x=Xmax. Finally we obtain the pressure 
changes for fixed distances  (n=0,1,…,N],0[ maxXxn ∈ x) in time interval [0,Tmax] for t=tm 
(m=0,1,…,Nt). 

During finite amplitude wave propagation in water we observe its distortion. It means 
that the harmonic wave shape changes step by step during its propagation. The waveform 
changes are equivalent with spectrum changes. The harmonic analysis is very often used to 
investigate wave distortion. The fast Fourier transform is used to calculate spectrum. 

3. NUMERICAL INVESTIGATIONS 

The pressure changes along x axis are the result of computer calculations. Figure 1 
presents normalized pressure changes along x axis for time t=65 μs. The numerical 
calculations were carried out assuming that primary wave which frequency f=1 MHz and 
amplitude p0=150 kPa propagates in water where speed c0=1500 m/s, density ρ0=1000 kg/m3, 
nonlinear coefficient ε=3.5. Calculations were done for dissipation coefficient b=0, b=0.004 
and b=0.04 respectively.  
 For fixed values of physical parameters (static pressure, density, speed of sound, 
nonlinear coefficient, dissipation coefficient) the correct choice of step sizes is very important 
during numerical calculations. There are two reasons of it. First of all the accuracy of 
numerical calculations depends on both step sizes time and space one. Moreover wrong 
choice of these step sizes can be the reason of wrong results of calculations at all. To analyze 
this problem, numerical calculations for different step sizes were done. This problem was 
considered for selected values of dissipation coefficient b, nonlinear coefficient ε and static 
pressure p0 and the same values of other physical parameters like earlier.   



 
a) 

0.07 0.08 0.09 0.1
-1.0

-0.5

0

0.5

1.0
p/p0

x[m]
 

b) 

0.07 0.08 0.09 0.1
-1.0

-0.5

0

0.5

1.0
p/p0

x[m]
 

c) 

0.07 0.08 0.09 0.1
-1.0

-0.5

0

0.5

1.0
p/p0

x[m]
 

Fig.1 Normalized pressure changes along x axis:  b=0 (a), b=0.004 (b), b=0.04 (c) 
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Fig.2 Normalized pressure as a function of time for b=0.004, ε=3.5: ∆x=0.1 mm (a), ∆x=0.05 mm (b) 
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Fig.3 Normalized pressure as a function of time for b=0.04, ε=3.5: ∆x=0.1 mm (a), ∆x=0.05 mm (b) 
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Fig.4 Normalized pressure as a function of time for b=0.04, ε=0: ∆x=0.1 mm (a), ∆x=0.05 mm (b) 
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Fig.5 Normalized pressure as a function of time for different values of nonlinear coefficients ε: 

1 - primary wave; 2 - ε=0; 3 - ε=3.5 
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Fig.6 Normalized pressure as a function of time for p0=150 kPa: 1 - x=0, 2 - x=0.3 m 
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Fig.7 Normalized pressure as a function of time for p0=10 kPa at x=1 m 
 



Figure 2 presents normalized pressure as function of time at distance x=0.4 m obtained 
for fixed value of step ∆x and twice smaller one ( 0/ ctx −=τ ). Calculations were done for 
b=0.004 and ε=3.5. Similar results we observe for dissipation coefficient b=0, i.e. when the 
dissipation effect is not covered at all. The results of numerical calculations obtained for 
b=0.04 and ε=3.5 are shown in Fig. 3. In this situation we obtain correct calculation results for 
both values of step ∆x. Similar effects of convergence we obtain for b=0.04 and ε=0 which 
means that it was covered only dissipation effect without nonlinear one (see Fig. 4).  

Exact analysis of the numerical results shows that if value of dissipation coefficient 
increases for fixed value of nonlinear coefficient then the maximum distance which is 
possible to analyze is longer. It is connected with the fact that proposed numerical method can 
be used only for continuous solution. In situation when values of dissipation coefficient is 
small then nonlinear effect dominates and the wave distortion is big. In situation when value 
of parameter b is big than we observe not only wave distortion but also decrease of its 
amplitude and then the nonlinear effect are not such big. To illustrate this effect pressure 
changes for fixed values of physical parameters are presented. Figure 5 shows normalized 
pressure as a function of time at distance x=1 m for b=0.04 and two different values of 
nonlinear coefficient. Curve number 1 shows primary wave, curve number 2 shows the result 
of numerical calculations for ε=0, curve number 3 presents similar result obtained for ε=3.5. 
Figures 6 and 7 present pressure changes calculated for b=0 and ε=3.5. First of them shows 
normalized pressure as a function of time calculated assuming that primary wave amplitude is 
equal p0=150 kPa. Curve number 1 presents primary wave and curve number 2 the results 
obtained at distance x=0.3 m. Figure 7 presents pressure as function of time at distance x=1 m 
calculated when primary waves amplitude p0=10 kPa.  

The pressure distribution for different values of physical and numerical parameters has 
been presented till now. On the basis of these results it is possible to calculate spectrum 
changes. Figure 8 presents normalized pressure as a function of time and changes of first four 
harmonics. Curve number 1 in Fig. 8a presents the pressure changes at distance x=0.1 m and 
curve number 2 the results obtained for x=0.3 m. The calculations were done for dissipation 
coefficient b=0.004. Similar results obtained after calculations for b=0.04 shows Fig.9.  
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Fig.8 Normalized pressure as a function of time at fixed distances (a) and amplitude of four first 

harmonics along x axis (b) for b=0.004 
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Fig.9 Normalized pressure as a function of time at fixed distances (a) and amplitude of four first 

harmonic along x axis (b) for b=0.04 

4. CONCLUSIONS 

The paper presents mathematical model and results of numerical investigations of finite 
amplitude plane wave propagation problem. The nonlinear acoustics equation was considered 
to work out mathematical model. The finite-difference method was used to solve the problem 
numerically. The numerical calculations were done using own computer program which was 
worked out on the basis on the proposed mathematical and numerical models.  

The analysis of the results of numerical calculations shows that proposed numerical 
method for small distances from the source plane is convergent. However for higher distances 
from this plane not for all step sizes we obtain correct solution. Generally, for fixed step sizes 
this method can be used in situation when the wave distortion is enough small. In situation 
when the nonlinear effect dominates, it is necessary to use smaller values of marching step 
∆x. Moreover it is important to remember that proposed in this paper difference equation is 
possible to use only when the solution of the problem is continuous. To study this problem 
exactly the other approximations of the original differential equation should be analyzed.  
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