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Perfect combinatorial configurations can be used for finding optimal placement of 
structural elements in spatially distributed sonar or acoustic systems for configure high 
performance systems with non-uniform structure (e.g. arays of sonar antennas) with respect 
to positioning precision, and resolving ability, using novel design based on combinatorial 
configurations such as "Golomb rulers" and difference sets. These design techniques make it 
possible to configure sonar systems with fewer elements than at present, while maintaining or 
improving on resolving ability and the other significant operating characteristics of the 
system. 

INTRODUCTION 

Problem of structural optimization of radar or sonar systems relates to finding the best 
placement of its structural elements in spatially distributed systems as well as a better 
understanding of the role of geometric structure in the behavior of the systems. Research into 
underlying mathematical area involves the appropriate algebraic constructions based on finite 
groups in extensions of Galois fields [1].  

Application of the algebraic constructions and modern combinatorial analysis provides 
optimal solution a lot of problems of high-resolution interferometry for radar, data 
communications, and signal design [2]. Some regular methods for constructing non-redundant 
two-dimensional n-element masks over n × n grids, based on algebraic combinatorial 
configurations such as difference sets are suggested in the publication [3]. However, the 
classical theory of combinatorial configurations can hardly be expected effective for 
constructing high-resolution 2-D or 3-D sonar systems, and finding optimal solutions for 
other problems in constructing radar and sonar systems including low side lobe sonar design 
and vector data coding. Hence, both an advanced theory and regular method for optimal 
solution the problems are needed. 
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1. PERFECT ORDERED CHAIN COMBINATORIAL CONSTRUCTIONS 

The “ordered chain” approach to the study of elements and events is known to be of 
widespread applicability, and has been extremely effective when applied to the problem of 
finding the optimum ordered arrangement of structural elements in a distributed technological 
system. It is the method of optimal structural proportions based on idea of “Perfect Numerical 
Bundle”. The simplest Perfect Numerical Bundles are "Ideal Golomb rulers" [2]. 

Here is an example of an Ideal Golomb ruler with n=3, namely 3-stage chain sequence 
{1,3,2} as being the Perfect Numerical Bundle (Fig.1).  
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Fig.1 Perfect 3-stage ordered chain sequence 

To see this, we observe, the all terms in each sum to be consecutive elements of the 
sequence allows an enumeration of all numbers from 1 to Sn = 6 exactly once:  

 
1=1,   2=2,   3=3,   4=1+3,     5=3+2,      6=1+3+2. 

 
Let us calculate all sums of the terms in the numerical n-stage (n ≥4) chain sequence of 

distinct positive integers Cn= k1, k2, …, kn, where we require all terms in each sum to be 
consecutive elements of the sequence.  

Clearly the maximum number of distinct sums is 
 

Sn = 1+2+…+n = n(n + 1)/2                                     (1) 
 

For example, the maximum number of distinct sums of the 5-stage (n=5) chain 
sequence {k1 , k2 , ..., k5} is  Sn=5 = 15: 

 
k1            k2         k3    k4      k5 
k1 + k2             k2 + k3         k3 + k4             k4 + k5  
k1 + k2 + k3            k2 + k3 + k4              k3 + k4 + k5  
k1 + k2 + k3 + k4          k2 + k3 + k4 + k5 
k1 + k2 + k3 + k4 + k5  

 
 
It is very hard problem to search distinct positive integers of the chain sequence {k1 , k2 

, ..., k5},  where we require all the all terms in each sum to be consecutive elements allows an 
enumeration numbers from 1 to Sn = 15 exactly once. Strictly speaking Ideal Golomb rulers of  
n ≥4 not exist. So, it is possible to go on finding non-ideal Golomb rulers with n ≥4 because 
well useful in applications to problems of signal design for radar, sonar, and data 
communications [2].   
 
 
 
 



2. 1-D PERFECT ORDERED RING COMBINATORIAL CONSTRUCTIONS 

 If we regard the chain sequence Cn as being cyclic, so that kn is followed by k1, we call 
this a ring sequence. A sum of consecutive terms in the ring sequence can have any of the  n  
terms as its starting point, and can be of any length (number of terms) from 1 to n-1. In 
addition, there is the sum T of all n terms, which is the same independent of the starting point. 
Hence the maximum number of distinct sums S  of consecutive terms of the ring sequence is 
given by 

 
S = n(n-1)+1.                         (2) 

  
Comparing the equations (1) and (2), we see that the number of sums S for consecutive 

terms in the ring topology is nearly double the number of sums S  in the daisy-chain topology, 
for the same sequence Cn  of  n  terms. 

An  n-stage sequence Cn={k1,k2,...,kn} of natural numbers for which the set of all  S 
circular sums consists of the numbers from 1 to S  = n(n-1)+1= n2-n+1 (each number occurs 
exactly once) is called an 1-D "Gold Numerical Ring" (GNR). Here is an example of an GNR 
with  n = 4  and  S = 42-4+1=21, namely {1,4,6,2} (Fig.2). 
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Fig.2 1-D GNR with parameters n=4 and R=1 

 
 
To see this, we observe the table 1. 

Tab.1  Sums of consecutive terms of the GNR with parameters  n=4 and R=1 

1=1 2=2 3=2+1 4 
5=4+1 6=6 7=2+1+4 8=6+2 
9=6+2+1 10=4+6 11=1+4+6 12=4+6+2 

 
Note that if we allow summing over more than one complete revolution around the ring, 

we can obtain all positive integers as such sums. Thus: 
 

 
13=1 + 4 + 6 + 2,  14=1 + 4 + 6 + 2 + 1,  15=2 + 1 + 4 + 6 + 2,  16= 2 + 1 + 4 + 6 + 2 + 1,  
etc. 

 
      Next, we consider a more general type of GNR, where the S ring-sums of consecutive 
terms give us each integer value from 1 to M, for some integer M, exactly R times, as well as 
the value M+1 (the sum of all n terms) exactly once. Here we see that: 



 
M = n(n-1)/R                   (3) 

     
                   
          An example of an GNR with n=4 and R=2 is the ring sequence {1,1,3,2}, for which the 
sums of consecutive terms are as follows (Fig.3).   
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Fig.3 1-D  GNR with parameters  n=4 and R=2 

 
         There are calculated sums of consecutive terms (table 2). 
 

Tab.2  Sums of consecutive terms of the GNR with parameters  n=4 and R=2 

1=1 1=1 2=2 2=1+1 
3=3 3=2+1 4=!+3 4=2+1+1 
5=3+2 5=1+1+3 6=1+3+2 6=3+2+1 

 
 
          We can see that each "circular sum" from 1 to 6 occurs exactly twice (R=2). We say  
that this 1-D GNR has the parameters  n=4, R=2. 

The simplest combinatorial configurations, namely Gold Numerical Rings (GNR)s are 
cyclic sequences of integers which form perfect partitions of a finite interval [1,s] of integers. 
The sums of connected sub-sequences of an GNR enumerate the set of integers [1,s] exactly 
R-times.   

3. 2-D  PERFECT ORDERED RING COMBINATORIAL CONSTRUCTIONS     

       If we regard the ring-ordered n-stage sequence C2-D
n={(k11, k12), (k21, k22), ...,(kn1, kn2)} of  

2-D terms  as being cyclic, so that (kn1, kn2) is followed by (k11, k12), we call this an 2-D ring 
sequence. A sum of consecutive terms in the 2-D ring sequence can have any of the n  terms 
as its starting point, and can be of any length.  
            Let us consider 2-D ring sequence of the four (n=4) terms C2-D

n= {(1,1), (1,2), (1,4), 
(1,3)} (Fig.4).  

  (1,1)

 (1,4)

 (1,3)  (1,2) 

 
     
 
 
 
 
 
 

Fig.4 2-D ring sequence of the four (n=4) terms {(1,1), (1,2), (1,4), (1,3)} 



 
        Using circular 2-D sums, it is easy to calculate all the sums, taking modulo m1=4 for the 
first component of the 2-D sums and modulo m2=5 for the second component of the sums 
(Table 4). 
 

Tab.3  2-D sums of consecutive terms of the 2-D ring sequence {(1,1), (1,2), (1,4), (1,3)} 2-modulo {4, 
5} 

(1,1)= (1,1) (1,2)= (1,2) (1,3)= (1,3) (1,4)=(1,4) 

(2,1)≡(1,2)+(1,4) (2,2)≡(1,4)+(1,3) (2,3)≡(1,1)+(1,2) (2,4)≡(1,3)+(1,1) 

(3,1)≡(1,3)+(1,1)+(1,2) (3,2)≡(1,1)+(1,2)+(1,4) (3,3)≡(1,4)+(1,3)+(1,1) 
 

(3,4)≡(1,2)+(1,4)+(1,3) 
 

 
          So long as the elements of the Gold Numerical Ring themselves are circular 2-D sums 
too, the circular 2-D sums set will be as follows: 

 
               (1,1)     (1,2)     (1,3)     (1,4)                       (4) 

(2,1)     (2,2)     (2,3)     (2,4) 
(3,1)     (3,2)     (3,3)     (3,4) 

 
The result of the calculation forms the 3×4 - matrix, which exhausts the circular 2-D 

sums and each of its meets exactly once (R=1). So, the ring sequence of the 2-D vectors 
{(1,1),(1,2),(1,4),(1,3)} is 2-D  Gold Numerical Ring with parameters n=4, R=!, and  m1 =4, 
m2 =5  (Fig.4). 

         In an underlying manner it is possible to consider 3-D as well as multidimensional 
"gold" numerical combinatorial constructions with numerous terms, and each of the terms can 
be of any length.  

4. APPLICATION OF 2-D GNRS FOR PLANAR LOW-SIDE LOBE ANTENNA DESIGN 

                   Here is example of constructing the planar antenna array configuration, based on two-
dimensional GNR with parameters n=13, R=4, m1 =5, m2 =8, where S = m1 × m2= 5 × 8 = 40, 
which allows be reconstructed into antenna array over 5 × 6 =30 grids: 

  

Fig.5 Antenna array over 5 × 6 grids reconstructed from the array over 5 × 8 grids based on the 2-D 
GNR. 



        We search needed solution after construction of 2-D matrix of all circular two-
dimensional vector-sums on the Gold Numerical Ring and regarding each of its with respect 
to search minimum of the sum using crossing out. The method described is given Fig. 5.   

           Underlying procedures make it possible to configure antenna arrays with the smallest 
possible number of grids.  
        The example shows that the grid order based on the combinatorial configuration can be 
reduced further without loss of the possibility to construct an antenna array. For any two-
dimensional phased antenna array configurations the antenna or sensor elements are 
positioned in a manner as prescribed by appropriate 2-D Gold Numerical Ring.    

                   The present method relates to constructing planar phased antenna array configurations.       
The antenna or sensor elements positioned in a manner as prescribed by underlying 
combinatorial technique make it possible to configure systems, using appropriate variant of 2-
D Gold Numerical Ring for constructing radar or sonar planar antenna arrays with minimum 
side-lobes. The method involves technique for minimizing sizes of the  arrays prescribed by 
parameters of appropriate 2-D Gold Numerical Ring. 

                 The search algorithm allows finding optimal solution in the simplest way based on 
regarding the appropriate matrix of circular two-dimensional vector-sums on suitable 2-D 
Gold Numerical Ring as well as crossing out operations. These procedures make it possible to 
configure planar antenna arrays with the smallest possible number of grids. Clearly we keep 
known relationships of grids sizes and parameters of working range for configured radar or 
sonar system. 

5. APPLICATION OF 3-D GNRS FOR CONFIGURE OF HIGH PERFORMANCE  
SONAR SYSTEMS 

        Three-dimensional Gold Numerical Rings (3-D GNRs) are ring n-stage sequences of 3-
stage ordered sub-sequences of n integer 3-D vectors, which form "perfect" 3-D partitions of a 
finite 3-D "circular"-space interval of the vectors over m1 × m2 × m3.  Needed solution is 
construction of 3-D matrix, based on appropriate 3-D GNR, for which set of all circular 3-D 
sums of the consecutive terms 3-modulo mi, i=1,2,3 enumerate a set of  3-stage terms exactly 
R-times.  It is a ring sequence C3-D

n={(k11, k12,k13), (k21, k22, k23 ), ...,(kn1, kn2, kn3)} of  3-D 
terms  as being cyclic, so that (kn1, kn2, kn3) is followed by (k11, k12, k13). A sum of consecutive 
terms in the 3-D ring sequence can have any of the n  terms as its starting point, and can be of 
any length. However, we require  to keep condition:  

                              (m1, m2, m3)=1                        (5) 
                   
         Such model make it possible to configure 3-D grid over m1 × m2 × m3, each node of the 
grid meets exactly R-times.  
          For example, the ring ordered 6-stage (n=6) sequence of 3-stage terms {(0,1,4), (0,2,4), 
(1,1,1), (1,1,2), (1,0,3), (0,2,2)} allows form 3-D matrix over 2 × 3 × 5 grid, based on the 3-D 
GNR. Here all circular 3-D vector sums, taking 3-modulos m1=2, m2=3, m3=5 enumerate 
nodes of the grid exactly once (R=1):           
            (0,0,1) ≡ (0,2,2) + (0,1,4)  
 (0,0,2) ≡ (1,1,2) + (1,0,3) 
 (0,0,3) ≡ (0,1,4) + (0,2,4) 
 (0,0,4) ≡ (1,0,3) + (0,2,4) + (0,1,4) + (0,2,4) + (1,1,1) 
 .................................................................................................... 
 (0,0,0) ≡ (0,1,4) + (0,2,4) + (1,1,1) + (1,1,2) + (1,0,3) + (0,2,2) 
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Fig.6 Geometric structure of the 3-D sonar system, based on the 3-D GNR. {(0,1,4), (0,2,4), (1,1,1), 
(1,1,2), (1.1,3), (0,1,2)} 

        Now, we can obtain coordinates of remaining five elements (1,1,1), (1,2,2), (1,1,3), 
(1,2,1), (0,2,3) 3-modulos (2,3,5) accordingly to the underlying 3-D Gold Numerical Ring, 
which configure 3-D sonar system. After this procedures we configure geometric structure of 
the 3-D sonar system, based on the 3-D GNR. {(0,1,4), (0,2,4), (1,1,1), (1,1,2), (1.1,3), 
(0,1,2)} over 2 × 3 × 5 - grids (Fig.6).  
        It should be noted that after crossing out operations on the 2 × 3 × 5 grids we can have 3-
D antenna array over 2 × 3 × 4, due to exclude all right-hand columns.  
         The example shows that the grid order based on the three-dimensional Gold Numerical 
Rings can be reduced further without loss of the possibility to construct an antenna array. For 
any three-dimensional phased antenna array configurations the antenna or sensor elements 
positioned in a manner as prescribed by appropriate 3-D Gold Numerical Ring.  

6. APPLICATION OF MULTIDIMENSIONAL GNRS FOR VECTOR DATA CODING 

A more general type of the "perfect" combinatorial configurations are t-dimensional 
(t>1) Gold Numerical Rings, where t-D GNR can be represented as an n-stage cyclic 
sequence {(k11, k21, ... kt1), (k12, k22, ,... kt2), ... (k1n , k2n, ... ktn)}.  

The t-D GNR allows configure a set of circular t-vector-sums on the sequence over M1 × 
M2 ×...×Mt -matrix exactly R- times.  
        Graphical model of   t-D GNR  is given below (Fig.7). 
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Fig.7 Graphical model of   t-D GNR  

( (  k12,k22,...kt2)



        Traditional methods for vector data coding are not always applicable because 
optimization technique that could be used to solve such problem demands to revise a lot of 
options. To solve the problem the property of t-dimensional GNR can be put into the basis of 
design the t-dimensional Monolithic GNR-code (MGNR-code). The code forms code 
combinations of semi-type symbols, which follow each other.  
        For example, the ring-like 2-D MBC formed on two-dimensional (t=2) GRB 
{(1,1),(1,2),(1,4),(1,3)} is illustrated by the next table: 
 
                                              

         1000           0100           0001              0010 
 
                                             0110           0011           1100              1001 
 
                                             1101           1110           1011               0111 
 
        The table consists of all code combinations by 2-D MGNR-code  of  2-vectors from (1,1) 
to (3,4)  the only way. 
        Applications profiting from the code are for example compression, signal reconstruction,   
operation speed , and simplicity of coding systems. 
          The underlying multidimensional models make it possible to apply concept of the Gold 
Numerical Rings for configure high-performance vector data communication systems, based 
on combinatorial techniques, with direct applications to information coding and modulation. 

7. CONCLUSION 

         The Perfect Combinatorial models discovers, essentially, a remarkable property of a 
space, and provides the new mathematical principles relating to the optimal placement of 
structural elements in spatially or temporally distributed systems. This property makes Gold 
Numerical Rings useful for finding optimal placement of structural elements in spatially 
distributed sonar or acoustic systems. Applications profiting from Gold Numerical Rings 
theory are resolving ability, minimizing sizes, non-redundant aperture and low-side lobe 
antenna arrays, vector data coding and signal reconstruction. There are a lot of 
multidimensional Gold Numerical Rings, which can be well used for configure high 
performance acoustic or sonar systems.    
         The perfect numerical models are based on the idea of perfection and harmony, which 
exists not only in the abstract models but in the real spice-time also.   
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