PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monochromatic acoustic recognition of scattering layers: case studies in the Turkish seas

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the major problems in bioacoustics, direct identification of organisms at species level was reviewed with comparison between modern acoustic-based statistics (algorithms, multivariate analyses, scattering models) and observatory acoustics on behavioral natures ascertained to the species (diel vertical migration, response to ambiance, school shapes). Modern biacoustics promise surely gate soon to fulfill solution of the problems. Presently, current acoustical knowledge required behavioral characterization identical to organisms targeted for direct identification. Integrating such techniques with previously obtained background knowledge on characteristics specific to certain organisms, acoustic techniques allow a significantly larger area of the ocean interior to be surveyed at a quite finer resolution on ecology of the scatterers than conventional methods. For instance, Calanus euxinus (copepod) and Sagitta setosa (cheatognath) have distinct patterns of vertical migration and time spent swimming, depending on the DO concentration of the water column in the Black Sea.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
125--136
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Institute of Marine Sciences Middle East Technical University POB 28, Erdemli, 33731, Mersin, Turkey
Bibliografia
  • [1] M. Gregg, Diapycnal mixing in the thermocline:a review, J Geophys Res, 92, 5249-5286, 1987. 2.KG. Foote, TK. Stanton, Acoustical methods. In: R. Harris, PH. Wiebe, J. Lenz, HR. Skjoldal,
  • [2] M. Huntley (Eds), ICES Zooplankton Methodology Manual, Academic Press, 223-258, London 2000.
  • [3] TK. Stanton, PH. Wiebe, D. Chu, MC. Benfield, L. Scanlon, L. Martin, RL. Eastwood, On acoustic estimates of zooplankton biomass, ICES J Mar Sci, 51, 505-512, 1994.
  • [4] AS. Brierley, P. Ward, JL. Watkins, C. Goss, Acoustic discrimination of Southern Ocean zooplankton, Deep Sea Res II 45, 1155, 1998.
  • [5] JD. Warren,TK. Stanton, PH.Wiebe, HE. Seim, Inference of biological and physical parameters in an internal wave using multiple-frequency, acoustic-scattering data, ICES J Mar Sci, 60, 1033-1046, 2003.
  • [6] B. Renard, Inversion of Acoustic Zooplankton Measurement for Adaptive PhysicalBiologicalOcean Forecast, MSc in Ocean Engineering, the Massachusetts Institute of Technology, 1-68,Boston, USA 2003.
  • [7] J. Coetzee, Use of a shoal analysis and patch estimation system (SHAPES) to characterisesardine schools, Aquat Living Resour, 13, 1-10, 2000.
  • [8] M. Soria, T. Bahri, F. Gerlotto, Effect of external factors (environment and survey vessel) onfish school characteristics observed by echosounder and multibeam sonar in the MediterraneanSea, Aquat Living Resour, 16, 145–157, 2003.
  • [9] Anon, Species Identification Methods From Acoustic Multi-frequency Information 1 st AnnualSIMFAMI Progress Report, 1-61, UK 2002.
  • [10] TK. Stanton, D. Chu D, Review and recommendations for the modeling of acoustic scatteringby fluid-like elongated zooplankton: euphausiids and copepods, ICES J Mar Sci, 57, 793-807,2000.
  • [11] MC. Benfield, CS. Davis, SM. Gallager, Estimating the in situ orientation of Calanusfinmarchicus on Georges Bank using the Video Plankton Recorder, Plank Biol Ecol, 47, 69-72,2000.
  • [12] E. Mutlu, Acoustical identification of the concentration layer of a copepod species, Calanuseuxinus, Mar Biol, 142, 517-523, 2003.
  • [13] LS. Svetlichny, ES. Hubareva, F. Erkan, AC. Gucu, Physiological and behavioral aspects ofCalanus euxinus females (Copepoda: Calanoida) during vertical migration across temperatureand oxygen gradients, Mar Biol, 137, 963–971, 2000.
  • [14] PM. David, O. Guerin-Ancey, JP. Van Cuyck, Acoustic discrimination of two zooplanktonspecies (mysid) at 38 and 120 kHz, Deep-Sea Res I, 46, 319-333, 1999.
  • [15] MYe.Vinogradov, MV. Flint, EA. Shushkina, Vertical distribution of mesoplankton in theopen area of the Black Sea, Mar Biol, 89, 95-107, 1985.
  • [16] S. Besiktepe, M. Unsal, Population structure, vertical distribution and diel migration of Sagittasetosa (Chaetognatha) in the south-western part of the Black Sea, J Plank Res, 22, 669-683, 2000.
  • [17] S. Besiktepe, Diel vertical distribution, and herbivory of copepods in the south-western part ofthe Black Sea, J Mar Syst, 28, 281-301, 2001.
  • [18] AE. Kideys, Z. Romanova, Distribution of gelatinous macrozooplankton in the southern BlackSea during 1996-1999, Mar Biol, 139, 535-547, 2001.
  • [19] E. Mutlu, Target strength of the common jellyfish (Aurelia aurita): a preliminary experimentalstudy with a dual-beam acoustic system, ICES J Mar Sci, 53, 309-311, 1996.
  • [20] PH. Wiebe, CH. Greene, TK. Stanton, J. Burczynski, Sound scattering by live zooplanktonand micronekton: empirical studies with a dual-beam acoustical system, J Acous Soc Am, 88,2346-2360, 1990.
  • [21] BC. Monger, S. Chinna-Chandy, E. Meir, S. Billings, CH. Greene, PH. Wiebe, Soundscattering gelatinous zooplankters Aequorea victoria and Pleurobrachia bachei, DeepSea Res II,45, 1255-1271, 1998.
  • [22] E. Mutlu, An intercomparison of the contribution of zooplankton and nekton taxa to the near-surface acoustic structure of three Turkish Seas, Mar Ecol, 26(1), (in press).
  • [23] RJ. Korneliussen, Measurement and removal of echo integration noise, ICES J Mar Sci, 57,1204-1217, 2000.
  • [24] V. Andersen, A. Gubanova, P. Nival, T. Ruellet, Zooplankton community during the transitionfrom spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2.Vertical distributions and migrations, J Plank Res, 23, 243-261, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0034-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.