PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear ultrasound propagation in water from square focused transducer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nonlinear pulsed acoustic pressure field from a focused square aperture is considered. Experimental measurements in water of a 4D sound field radiated from a 2.8 MHz focused square transducer of a 20 mm side and a 80 mm focal distance for excitation level producing an average acoustic pressure P0 = 0.14 MPa at its surface are presented. The obtained results are compared with the numerical calculation results for the same boundary conditions. The novel, free from paraxial approximation and computationally efficient numerical algorithm was used to simulate the 4D nonlinear pulsed pressure field from the nonaxisymmetric acoustic source. Our theoretical model was based on the Time-Averaged Pressure Envelope (TAPE) method recently developed that enable to represent the propagated pulsed disturbance as a superposition of sinusoidal wavelets with carrier frequencies being the harmonics of the initial tone burst and with envelopes determined by the TAPE method. The novel approach to the solution of the nonlinear wave equation enabled to simulate full 4D nonlinear field for given boundary conditions in a dozen or so minutes utilizing the computational power of the standard PC.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
89--98
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research of Polish Academy of Sciences Świętokrzyska 21, 00-049 Warsaw, POLAND
autor
  • Institute of Fundamental Technological Research of Polish Academy of Sciences Świętokrzyska 21, 00-049 Warsaw, POLAND
autor
  • Institute of Fundamental Technological Research of Polish Academy of Sciences Świętokrzyska 21, 00-049 Warsaw, POLAND
  • Institute of Fundamental Technological Research of Polish Academy of Sciences
Bibliografia
  • [1] J. Wójcik, Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation, J. Acoust. Soc. Am. 104, 2654-2663, 1998.
  • [2] V. P. Kuznetsov, Equations of nonlinear acoustics, Akust. Zh. 16, 548-553, 1970.
  • [3] P. Christopher, K. Parker, New approaches to nonlinear diffractive field propagation, J. Acoust. Soc. Am. 90, 488-499, 1991.
  • [4] J. Tavakkoli, D. Cathignol, R. Souchon, O. A. Sapozhnikov, Modelling of pulsed finite-amplitude focused sound beams in time domain, J. Acoust. Soc. Am. 104, 2061- 2072, 1998.
  • [5] A. C. Baker, A. M. Berg, A. Sahin, J. N. Tj∅ta, The nonlinear pressure field of plane, rectangular apertures: Experimental and theoretical results, J. Acoust. Soc. Am. 97, 3510-3518, 1995.
  • [6] R. J. Zemp, J. Tavakkoli, R. S. C. Cobbold, Modeling of nonlinear ultrasound propagation in tissue from array transducers, J. Acoust. Soc. Am. 113, 139-152, 2003.
  • [7] M. D. Cahill, A. C. Baker, Numerical simulation of the acoustic field of a phased array medical ultrasound scanner, J. Acoust. Soc. Am. 104, 1274-1283, 1998.
  • [8] M. D. Cahill, A. C. Baker, Increased off-axis energy deposition due to diffraction and nonlinear propagation of ultrasound from rectangular sources, J. Acoust. Soc. Am. 102, 199-203, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0034-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.