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 The nonlinear pulsed acoustic pressure field from a focused square aperture is 
considered. Experimental measurements in water of a 4D sound field radiated  from a 2.8 
MHz focused square transducer of a 20 mm side and a 80 mm focal distance for excitation 
level producing an average acoustic pressure P0 = 0.14 MPa at its surface are presented. The 
obtained results are compared with the numerical calculation results for the same boundary 
conditions. The novel, free from paraxial approximation and computationally efficient 
numerical algorithm was used to simulate the 4D nonlinear pulsed pressure field from the 
nonaxisymmetric acoustic source. Our theoretical model was based on the Time-Averaged 
Pressure Envelope (TAPE) method recently developed that enable to represent the 
propagated pulsed disturbance as a superposition of sinusoidal wavelets with carrier 
frequencies being the harmonics of the initial tone burst and with envelopes determined by the 
TAPE method. The novel approach to the solution of the nonlinear wave equation enabled to 
simulate full 4D nonlinear field for given boundary conditions in a dozen or so minutes 
utilizing the computational power of the standard PC. 

INTRODUCTION 

The theoretical and experimental studies of the finite amplitude acoustic waves 
propagation in attenuating media from nonaxisymmetric sources rather rarely can be found in 
literature in spite of the fact that probes of the rectangular geometry (such as linear phased 
arrays) are commonly used in clinical practice for medical ultrasonic imaging purposes. The 
main reason of such situation is a lack in simpler theoretical models and in computationally 
efficient numerical algorithms that are able to predict accurately the nonlinear effects in the 
4D ultrasound field from pulsed arbitrarily shaped sources (plane and focused) in biological 
liquids and tissues with frequency-dependent absorption coefficients. Majority of previous 
models used to simulate the ultrasound beam propagation in lossy and nonlinear media are 
based on the KZK equation or it’s expansion versions [5, 7, 8]. This model use a finite 
difference scheme required a large number of incremental steps to propagate the acoustic 



wave forward with accounting for the effects of diffraction, absorption and nonlinearity over 
each step. The validity of this model is limited to the cases of plane or weakly focused 
acoustic beams (with slight diffraction effects) and to the paraxial area at the distance from 
the source equal to few it’s radii. The numerical implementation of this model was developed 
only for axisymmetric sources and is known as the Bergen code.  

The first, not restricted by the paraxial approximation theoretical model of the finite 
amplitude acoustic wave propagation in attenuating nonlinear media was developed by 
Christopher and Parker [3]. Their model used the incremental step scheme for the propagation 
of the acoustic wave forward and the operator-splitting method to account separately for the 
effects of  full diffraction, arbitrary absorption and nonlinearity in acoustic beam over the 
small steps. The authors used the frequency-domain solution to the set of nonlinear wave 
propagation equations to account for the effects of diffraction and absorption for each spectral 
component as well as the time-domain solution to the Burgers equation of nonlinearity to 
account for the effects of nonlinear distortions. However the numerical implementation of the 
above model was developed only for a circular source geometry. 

Tavakkoli et al. [4] have developed a time-domain numerical model capable to simulate 
the finite-amplitude focused acoustic pulse propagation in a dissipative and nonlinear 
medium. The model was used for predicting of pressure fields of highly focused sources 
developed for tissue destruction studies. It used a second order operator-splitting method with 
a fractional step scheme whereby the effects of full diffraction, arbitrary absorption and 
dispersion as well as nonlinearity were computed independently over fractional sub-steps. 
This model was more computationally efficient compared with the Christopher and Parker 
approach because the algorithm developed was able to use larger sub-steps in the beam 
propagation direction. The implementation of the model also was developed only for 
axisymmetric sources.  

In recent years the only study describing the computationally efficient numerical model 
that is able to simulate accurately the 4D nonlinear ultrasound field in water and in biological 
tissues from pulsed nonaxisymmetric sources (including linear phased arrays) was developed 
by Zemp et al. [6]. Their model is based on the second order operator-splitting method 
proposed by Tavakkoli et al. with the modified fractional step scheme whereby the combined 
effects of diffraction and absorption are accounted for over half-steps and the effects of 
nonlinear harmonic interactions over full incremental steps. The computation of diffractive 
and absorption sub-steps was based on the angular spectrum technique with modified 
sampling method (to obtain computational savings due to larger axial propagation steps) 
while the computation of nonlinear steps was based on the time-domain solution to Burgers’ 
equation. There are not reports yet describing an experimental confirmation of an agreement 
between the simulated pulsed nonlinear acoustic fields in water or in soft tissues from 
nonaxisymmetric focused sources (obtained by using the numerical model proposed) and 
nonlinear field from realistic probes. 

In this work the experimental measurement results of the 4D nonlinear field  from the 
square focused ultrasound transducer radiated the pulsed pressure wave in water are 
presented. The realistic beam patterns are compared with the simulation results obtained by 
using our novel numerical model. The proposed model is free from paraxial approximation, 
computationally efficient and capable of predicting the 4D ultrasound field in nonlinear and 
lossy media with arbitrary frequency-dependent absorption from pulsed, arbitrary shaped, 
plane and focused sources (including linear phased arrays with a beam deflection). Using the 
computational power of a standard PC the calculation time required for full 4D nonlinear field 
simulation by using our model depends on dimensions, the radiated frequency and the 



excitation level of the source as well as on the absorption and nonlinearity strength of the 
medium and can vary from a few minutes to a few hours.  

1. EXPERIMENT 

Experimental measurements were made with a 2.8-MHz ultrasonic focused probe with a 
square aperture (of the sides a = 20 mm and the focal distance F = 80 mm) radiating in 
degassed distilled water. The pressure field generated by the transmitting transducer was 
measured using a wideband (calibrated over the range 1- 40 MHz) membrane PVDF 
hydrophone (Sonora Medical Inc. S/N S5-153,  preamplifier P-159) with an active area of 
0.414 mm in diameter. The probe was mounted on a translation stage driven by stepper 
motors allowing the transmitter motion in horizontal and vertical planes with given steps that 
could vary from 0.1 to 5 mm as well as rotation in azimuth. The transducer was driven by the 
pulse generator (model Ritec 1000) producing tone bursts of the variable level, frequency and 
duration. Measurements close to the transmitter surface (in order to determine the average 
pressure amplitude P0 at the source being the input parameter to the numerical model) were 
made with short tone bursts (of 4 cycles duration) and measurements typically started at 4 cm 
from the transducer were realized with long tone bursts (of  8 cycles duration). Measurements 
were made along the acoustic beam axis  Z, in both the XZ and YZ planes at the axial range 
from 40 mm to 120 mm with 5 mm steps and across the beam axis in the XY planes with 0.5 
mm steps. The transverse plane measurements close to the transducer covered the square area 
corresponding to the range in both the X and Y directions equal to ± 15 mm as well as farther 
from the source – the area corresponding to the range ± 5 mm. The hydrophone was located 
on the acoustic beam axis by manual adjustment in the vertical and horizontal directions. The 
acoustic axis was determined from the symmetry of the beam (see Figs 1, 2). The hydrophone 
output was connected via linear broadband amplifier (model Ritec BR-640) to the input of an 
8-bit digital oscilloscope (model HP54503A) with a 50 MHz sampling frequency. The 
received signals were digitized, averaged in the scope memory from 50 consecutive 
waveforms and sent to a PC via a GPIB interface for spectral analysis using FFT. Then the 
resulting harmonic components were corrected in agreement with the hydrophone sensitivity 
dependence on the frequency.   
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Fig.1 The measured transverse patterns of the acoustic pressure distribution close to the transducer at 
the distance z = 5 mm from the radiating surface: A) in the form of isobars (the range from – 2 dB to – 

16 dB is shown) , B) along the X direction, C) along the Y direction 
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Fig.2 The measured acoustic field patterns visualized in order to ascertain the symmetry of the beam: 
A) and B) – in both the XZ and YZ axial planes, respectively and C) – in the XY plane at the distance z 

= 90 mm 

In order to determine the average pressure amplitude P0 at the source (required as the 
boundary condition parameter to the nonlinear numerical model) two sets of measurements 
were made: at low and high drive levels. The measured axial pressure distribution at the low 
drive level was compared with the numerical simulation results for given aperture dimensions 
and various P0 values when linear theory was applied. In this case the contents of higher 
harmonics in the beam spectrum was inconsiderable and the propagation could be treated as a 
linear problem. The measured axial acoustic pressure that fitted the best to the calculated one 
provided the determination of P0 value for the low drive level. The second set of 
measurements was made at the high drive level when the nonlinear effects in the pressure 
field are considerable. The increase in the axial pressure amplitude from the low to the high 
drive level gives a scaling factor for P0. The value of  P0   for the nonlinear case was found as 
the value for the linear case multiplied by the ratio of the pressures measured close to the 
aperture when the respectively high and the low drive level were used. The average pressure 
at the source as the input parameter to the numerical algorithm for the nonlinear field 
simulation was determined as  P0  = 0.14 MPa.   
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Fig.3 The normalized acoustic pressure distribution across the beam axis in both the X and Y 
directions assumed at the source surface (uniform) and calculated by using our numerical algorithm at 

the distance  z = 5 mm from the source 



The normalized uniform apodisation function at the source as the boundary condition to 
the numerical solution was assumed to be equal to 1. Then the calculated transverse pressure 
along the X and Y directions close to the source surface (at the distance  z = 5 mm) has the 
distribution shown in Fig. 3. The agreement between both the calculated and measured 
transverse pressure distributions are very good (comparing with  Figs 1B, 1C).  

2.  THEORETICAL MODEL 

The model used to describe a propagation of an acoustic disturbance in a lossy and 
nonlinear medium is based on the equation [1] derived by the second author from the 
Kuznecov equation [2]. Our model provides the comprehensive near and far field description 
due to a linear hyperbolic operator (two first terms) describing the finite amplitude acoustic 
wave propagation as well as it is free from the paraxial approximation. In the dimensionless 
system of independent and dependent variables and retarded time this equation can be  
expressed as  
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where  is the dimensionless acoustic pressure;  is the characteristic pressure 
(here the peak of the absolute pressure value at the source); 
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where  is the dimensional pressure; ),,( τ′′′′ zP x ),,( tz ′′′x  are the dimensional coordinates and 
time;  is the angular frequency. The imposition of the relation causes the 
normalization of space and time in the same units. Both the distances and durations are measured 
in the number of wavelengths or cycles of the wave with the angular frequency  multiplied by 
2 . Assuming , where  is the dimensional characteristic wavelength (here 

,  is the maximum distance between source points and T  is the initial 
disturbance duration), the corresponding dimensional time window for spectral analysis equals 
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to  000 cλT =′ and the condition of the separation of radiated periodic pulses in the half-space 
z ≥ 0 is fulfilled. In the dimensionless units the windows (both the space and time) equal to π2 .  

The solution  to Eq. (1) for a given boundary conditions was searched in the 
new form represented by a series R given by Eq. (3): 
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Here ,  describes the quasi-Fourier (quasi - because  depends also 
on time) spectrum of R. M is the effective dimension of the representation R. For 
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term . 01 ≡+Mο N~  is the dimensionless carrier frequency of the boundary pulse (number of 
cycles with the period of 0
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the complex conjugate. The disturbance is presented as the superposition of sinusoidal waves 

bounded in time (wavelets) with the carrier frequencies 
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the harmonics of the fundamental N~ . The series (3) may be interpreted as the quasi-Fourier 
superposition of pulses with the envelopes mP  and the carrier frequencies  Then the 
Fourier spectrum of the disturbance P can be represented by the superposition of the Fourier 
spectra of the M wavelets.  
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After substitution of Eq. (3) into Eq. (1) the following set of M equations for the 
envelopes  is obtained mP
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This set of equations is solved by using incremental propagation scheme and operator-

splitting technique allowing to propagate linear and nonlinear effects separately over 
incremental steps. The nonlinear step consists in solving of the following equation 
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From the boundary conditions obtained from the solution of Eq. (6) the step accounting 
for the effects of both the full diffraction and arbitrary absorption consists in solving of the 
equation 
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The determination of the envelope functions  for given boundary conditions to the 

nonlinear propagation model is based on  presentation as the product of the envelope 
function of the disturbance being the solution of the linear case (q = 0) of Eq. (1) 
for the same boundary conditions and functions . Then the problem resolves to the 
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determination of functions. The indirect Time-Averaged Pressure Envelope (TAPE) 
method for determination of the set of  M  functions was used. 
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Our novel TAPE method enabled to shorten computational time of the full 4D nonlinear 
field simulation by several orders of magnitude allowing to predict nonlinear beam from 
rectangular focused apertures in less than 1 hour using the computational power the only 
standard PC.  

3. RESULTS AND DISCUSSION 

Figures 4–6 compare measurement results with theoretical predictions for square 
aperture tested. In all cases the experimental results are plotted as circle points and the 
numerical simulations as solid lines. The following boundary condition parameters were used 
in the calculations:  = 1492 m/s, = 997 kg/m0c 0ρ

3, B/A = 5.2, Np/(m·Hz14108.2 −⋅=α 2). Fig. 
4 shows both the calculated by our numerical solver and measured axial pressure amplitudes 
for the fundamental, 2-nd and 3-rd harmonic components. 
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Fig.4 The 1-st (red), the 2-nd (blu) and the 3-rd (black) harmonic axial pressure distribution 
calculated by our numerical code (solid lines) and measured (points) 

The agreement between experimental and numerical results for the square aperture is 
fairly good. The positions of the maxima are predicted accurately in spite of some 
discrepancies in amplitudes. A number of factors could be responsible for this. The 
discrepancies may be caused by spatial averaging at the hydrophone or ‘strabismus’ of the 
transducer. It is also possible that the apodisation function in the concave plane of the square 
radiating aperture is not uniform as was assumed in the numerical algorithm. Fig. 5 shows on-
axis acoustic pressure waveforms simulated by our numerical code and measured for the 
investigated square aperture radiated the initial average pressure of 0.14 MPa.       
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Fig.5 The normalized axial acoustic pressure waveform at the focal distance z = 80 mm calculated by 
our numerical solver (left top) and measured (left bottom) for tested square focus transducer and their 

spectra, respectively 
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Fig.6 The peak-compression (top black), peak-rarefaction (bottom black) and peak-to-peak (red) 
axial pressure distributions calculated (lines) and measured (points) for initial pressure amplitude P0 = 

0.14 MPa 



The measured transverse pressure distribution plots for the X and Y directions at the 
focal distance of 80 mm are demonstrated in Fig. 7.  
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Fig.7 Transverse pressure distribution measured in the X and Y directions at the focal distance 

The fundamental and 2-nd harmonic component pressure field in form of the 
logarithmic scale isobar plots filled with color are illustrated in Fig. 8.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 The fundamental and 2-nd harmonic component pressure field in the XZ half-plane (left) and 
the transverse peak-to-peak pressure field in the focal plane 

4. CONCLUSIONS 

Measurements of the acoustic pressure field from square focused aperture were 
presented. Two different levels of pulsed excitation corresponding to linear and nonlinear 
cases of sound propagation were applied to determine accurately the average pressure 
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amplitude at the source that is required as the input parameter for our numerical algorithm. 
Comparison between experimental and numerical simulation results has shown that our 
numerical code, based on the Time-Averaged Pressure Envelope (TAPE) method, predicts 
well the structure of the ultrasound field for considered boundary conditions.  
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