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 The paper presents the results of the numerical investigations of the finite amplitude 
waves interaction problem for circular piston with Gaussian pressure amplitude. The 
mathematical model and some results of numerical investigations are presented. The 
mathematical model was built on the basis on the Khokhlov – Zabolotskaya – Kuznetsov 
equation (KZK equation). To solve the problem the finite-difference method was applied.  The 
on-axis pressure amplitude as a function of distance from the source for different frequency 
waves and their pressure amplitude distributions at horizontal section were investigated. The 
calculations were done for different values of source and medium parameters. The results of 
computer calculations were compared with analytical solutions of the KZK equation in 
special cases. 

INTRODUTION 

 The mathematical model of the finite amplitude waves interaction problem is built 
using nonlinear differential equations. The KZK equation is often used in theoretical 
investigations of this problem. This equation describes the pressure changes along sound 
beam. It allows including nonlinearity, dissipation of medium and sound beam diffraction. 
This is not known exact analytical solution of this equation till now. There are known only 
asymptotic solutions of it. The method of successive approximations can be used to find the 
KZK equation solution [2] when the nonlinear effects are not very big at investigated space 
(Rea<1, where Rea – Reynold’s number). In general cases the KZK equation is solved 
numerically. The finite-difference method is one of the numerical methods which are used to 
solve this problem [1].  

 The aim of this paper was numerical analysis of the finite amplitude waves interaction. 
The problem was considered as an axial symmetric one. It was assumed that the circular 
piston is the source of two different frequency finite amplitude waves. The influence of values 
of source parameters on the pressure distribution along sound beam was studied. 

 



1. THEORY OF THE PROBLEM  

The main aim of this paper was theoretical analysis of pressure changes along the sound 
beam for the circular piston with fixed radius which is the source of two finite amplitude 
waves. To realize this aim we assume that the piston is placed in plane y0x in such way that 
axis x corresponds with beam axis. Due to assumption of axial symmetry of the source and 
pressure distribution on the source it is comfortably to solve the problem in cylindrical 
coordinates, i.e. calculated pressure p’ is function on time and space coordinate (x,r) where 

22 zyr += . 
 The mathematical model is built on the basis on KZK equation: 
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where p'=p-p0 denotes an acoustic pressure, variable τ=t-x/co is the time in the 

coordinate system fixed in the zero phase of the propagating wave, ρ0  - medium  density  at  
rest, co - speed  of  sound, b - dissipation coefficient of the medium, ε - nonlinear coefficient. 

The pressure distribution on the piston is defined by:  
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for r≤a and 0),,0(' == τrxp  for r>a, where ω π1 12= f , ω π2 2= f2 are angular 
frequencies of primary waves respectively and a denotes the radius of piston. Parameters L01 
and L02 are certain real constants. The normalized pressure distribution on the piston 
illustrates Fig. 1. Figure 1a presents on-axis pressure as a function of time for f1=1.2 MHz and 
f2=1 MHz. The normalized pressure amplitude for primary waves as a function of distance 
from the beam axis for L01=L02=1 (line number 1) and L01=L02=4 (line number 2) are shown 
in Fig. 1b. 
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Fig.1 The normalized on-axis pressure as a function of time (a) and normalized pressure amplitude 
for primary waves as a function of distance from the beam axis (b) 



The solution of Eq. (1) is looked for inside a cylinder with radius R1 for distances to X1 
from the source in time interval ],0[ 1T∈τ . Finally, solution of the KZK equation is looked for 
in a domain D: 

{ }],0[],,0[],,0[:),,( 111
3 TRrXxRrxD ∈∈∈∈= ττ . 

Additionally it is assumed that pressure 0),,(' =τrxp  for r>R1 and p’ is periodic 
function of the coordinateτ . 

The knowledge of pressure amplitude changes for difference frequency wave is very 
important in practical applications. Assuming that pressure distribution on the source is 
defined by formula  
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and the wave distortion is not very large, the pressure amplitude changes of this wave along 
the sound beam can be analyzed using formula [2]: 
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from the piston  where additionally the condition0
2 2/ cax i πω<< 1/2 0 <<ibp ωε  (i=1, 2) is 

satisfied. 
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Fig.2 2. Pressure amplitude distribution for difference frequency wave at horizontal section (a) and 
pressure amplitude for this wave as a function of distance from the source (b):                                      

1 - r=0, 2 - r=a/2, 3 – r=a 

 The pressure amplitude distribution for difference frequency wave at horizontal 
section and pressure amplitude for this wave as a function of distance from the source for 
fixed distances from the beam axis are presented in Fig. 2. The pressure amplitude changes 



were calculated using formula (4) for source parameters equal f1=1.2 MHz, f2=1MHz, p0=10 
kPa, a=25 mm and medium parameters c0=1000 m/s, ρ0=1500 kg/m3, ε=3.5, b=0.004.  

The finite-difference method is used to solve the problem numerically. To solve Eq. (1) 
numerically function ),,(' τrxp is discretized in both space and time. The rectangular net is 
constructed in domain D. The pressure changes along the sound beam are obtained after 
computer calculations.  

 The waveform changes are equivalent with spectrum changes during waves 
propagation in water. The harmonic analysis is very often used to investigate wave distortion. 
The fast Fourier transform is used to calculate spectrum. 

2. NUMERICAL INVESTIGATIONS 

Formula (4) allows investigating changes of pressure amplitude only for difference 
frequency wave. To investigate the pressure amplitude for different frequency waves it is 
necessary to solve equation KZK numerically.  

Figure 3 shows normalized on-axis pressure amplitude for difference frequency wave as 
a function of distance from the source. In this situation radius of circular piston was equal 
a=50 mm and pressure distribution was defined by formula (2) where frequencies of primary 
waves were equal f1=1.2 MHz and f2=1 MHz, pressure p01=p02=p0=10 kPa, parameters 
L01=L02=1. The numerical calculations were carried out assuming that the waves are 
propagated in water where speed of sound c0=1500 m/s, medium density ρ0=1000kg/m3, 
nonlinear coefficient ε=3.5 and dissipation coefficient of the medium b=0.04.  

 

 
Fig.3 Normalized on-axis pressure amplitude for difference frequency wave as a function of distance 

from the source calculated numerically (solid line) and analytically (dashed line) 
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Fig.4 Normalized on-axis pressure amplitude for different frequency waves as a function of          
distance from the source: a – f1 , b – 2f1, c – f2, d – 2f2, e - f-,  f – f+ 

 



The dashed line was calculated using formula (4) and the solid line presents numerically 
calculated pressure amplitude changes on the beam axis. Comparison of both curves confirms 
that proposed mathematical model was worked out correctly. 

Figure 4 presents the normalized on-axis pressure amplitude for different frequency 
waves as a function of distance from the source. Calculations were carried out for the same 
values of source and medium parameters as earlier except radius of piston. Now, it was 
assumed that this radius was equal a=25 mm.  

The comparison of results presented in Fig. 3 and Fig. 4 shows that value of piston 
radius has influence on the values of pressure amplitude. Other source parameters have 
influence on it, too.  

The on - axis pressure amplitude for difference frequency wave as a function of distance 
from the source for different values of pressure p0 presents Fig. 5. Of course, the pressure 
p0=1 MPa is very large but Fig. 5 shows the influence on this parameter for pressure 
amplitude distinctly. Figure 6 presents similar results obtained for piston generated waves 
which frequencies are equal f1=1.2 MHz, f2=1 MHz and f1=1.5 MHz, f2=1.2 MHz 
respectively, pressure p0=150 kPa.  

 It was assumed that the parameters L01 and L02 were equal 1 in formula (2) till now. 
Numerical investigations were done for different values of these parameters. Figure 7 presents 
on-axis pressure amplitude for primary waves as a function of distance from the source 
calculated for parameters L01=L02=4. Figure 8 shows similar results for second harmonics of 
primary waves, sum and difference frequency wave. In this situation it was assumed that 
frequencies of the primary waves were equal f1=1.2 MHz, f2=1 MHz respectively, pressure 
p0=10 kPa, source radius a=25 mm. 
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Fig.5 Normalized on-axis pressure amplitude for difference frequency wave as a function of    

distance from the source for different values of pressure p0:                                                             
1 – p0=10 kPa, 2 – p0=1 MPa 
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Fig.6 Normalized on-axis pressure amplitude for difference frequency wave as a function of         

distance from the source for different values of primary wave frequencies:                                             
1 – f1=1.2 MHz, f2=1 MHz; 2 - f1=1.5 MHz, f2=1.2 MHz 
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Fig.7 Normalized on-axis pressure amplitude for primary waves as a function of distance from the 

source: 1 – f1, 2 - f2 
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Fig.8 Normalized on-axis pressure amplitude for different frequency waves as a function of distance         

from the source: 1 – 2f1, 2 -2f2, 3 – f-, 4 – f+ 

3.  CONCLUSION 

 The finite amplitude waves interaction problem for circular piston with Gaussian 
pressure amplitudes was considered. Mathematical model and some results of computer 
calculations were presented. Mathematical model was built on the basis on the KZK equation. 
The finite-difference method was used to solve the problem numerically.  

 Paper presents the analytical formula of the pressure amplitude for difference 
frequency wave when the waves distortion is not very large. Comparison of the results of 
numerical calculations with suitable analytical curves confirms correctness of the 
mathematical model and computer programs. 

The analysis of the results of numerical calculations shows that values of primary wave 
frequency and its amplitude have influence on values of pressure along sound beam. The 
correct choices of source size and source pressure distribution are very important, too. 
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