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We explain, motivation behind this work and briefly describe foundation of new method 
which we have developed for efficient solution in PC environment of the nonlinear 
propagation equation with the boundary conditions applied for both circular and not circular 
transducers (like array). Comparison between new and old method will be presented for 
strongly nonlinear disturbance. At the end we will demonstrate the results of the numerical 
calculations of the nonlinear field propagating from the array. 

INTRODUCTION 

 Theoretical analysis of the nonlinear scalar wave equation, describing the propagation 
of sound , made it possible to develop a very efficient numerical code solving  this equation in 
the PC domain  for one-side  boundary problems. The new method applied for axially 
symmetrical  (2D+t) problems makes the calculation times at least several times shorter for 
weak nonlinearities. In the boundary cases without the axial symmetry, so in fact 3D+t, 
numerical costs – demanded memory size and calculation time become two orders of 
magnitude smaller in relation to methods used previously. This enables in general to solve this 
kind of problems by means of computers of the PC class in the case of a strong nonlinearity. 

 In the ultrasonography nowadays more often used are multielement transmitting 
probes.     

Fig.1 shows for example the diagram of arrangement of active piezoelectric elements 
(antennas) applied in such a heads (convex). This is also a good illustration showing the 
geometry of boundary conditions which are characteristic for 3D+t problems. The electronic 
control of the phase and amplitude, stimulating the piezoelectric active elements, makes it 
possible to deflect and to form time-space characteristics of the ultrasonic beam.  
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 The developed numerical code provides information, which make it possible to obtain 
all stationary and dynamic characteristics of the field generated by such a probe and especially 
its time-spatial (4D) visualization.  

 In this way such a solver, besides of pure scientific applications of solving equations 
of nonlinear acoustics, can be used as a basic tool to support and rationalize the process of 
design of the probe as a source of the acoustic field with finite amplitudes. It allows us 1) To 
test the scientific ideas for possible practical applications. 2) To evaluate the materials. 3) To 
choice working conditions to optimize the beam shape. 4) Determination of the influence of 
technological defects on the distribution of the acoustic field. 5) Identification of properties of 
transmitting probes by comparison of measured and computed fields. 6) Calibration of 
hydrophones. 7) Determination of secondary effects – positive like hiperthermia and negative 
thermal effects, mechanical effects  - determination of safe radiation doses. 

 The results obtained in solving of some problems mentioned above by means of the 
solver, designed by the present authors, were already published [1],[2],[3] and  presented 
during  many conferences [4],[5]. Therefore we will reduce our presentation, firstly to show 
the fundamental theoretical idea which is the basis of a new method of solving nonlinear 
problems of acoustics and the design of the mentioned solver. Secondly to compare the 
computation results which were obtained by means of the old method (OLD METHOD) and 
the new one (NEW METHOD). 

 For axially symmetrical disturbances (2D + t) Fig.1, generated by circular sources, the 
above mentioned problems can be and are solved by means of codes used in PC environments 
on the basis of methods known since many years [6]. In such a case the expanding power of 
processors have a distinct effect on the performance of these solvers. However even then it 
can occur that the computation takes a long time of many hours. Description of the fields 
generated by sources of arbitrary shape, particularly like arrays, requires - in respect to the 
fields generated by circular sources - to introduce an additional spatial dimension; it means 
that they are really 3D+time see Fig.1. As a result even in the trivial case the size of the set of 
samples representing the generated field increases no less than two orders of magnitude in 
respect to axially symmetrical disturbances. It causes qualitatively different requirements for 
solving problems of this type. The method used up to now for circular sources are for array 
not sufficient – excluding the stimulation by means of continuous waves. 
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Fig. 1. One-dimensional (left) and two dimensional, one-side boundary values problems. 



1. NONLINEAR PROPAGATION MODEL 
 

 1.General description 
 In the dimensionless system of independent and dependent variables with the retarded 

time the equation describing propagation of acoustical disturbances in the lossy and nonlinear 
medium has the following shape 

                                                                   (1) 2PP2P2P A ττττ ∂−=∂−∂−∆ qz

where:  Laplace operator; ∇ - operator of gradient; - dimensionless 
coordinates in space, - in the Cartesian coordinate system, - in cylindrical 
coordinate system for axially symmetrical problems (in respect to the axis 0–z);τ –
dimensionless retarded time, t– dimensionless time; – dimensionless pressure; - 
operator of the convolution type, describing dispersion (absorption), in the time representation 

, -kernel of the operator A(for more details see [7],[8]). The following 
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adiabate or γ - parameter of nonlinearity. Imposing the relation  for 
the values of and , which normalize space and time means the acceptance of a common 
measure for the distance in space and in time – in radians.  
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 Equation (1) should become complete by boundary conditions. In both geometrical 
cases those conditions can be created as an effect of considerations or a result of 
measurements carried out near to the source of the disturbance. For circular sources we 
assume the apodisation in amplitude and in phase along the axis r. For non circular sources we 
suppose the spatial distribution of the orientation of transmitting elements (plane or not plane) 
and individual amplitude-phase apodisation. In both cases the time excitation can be changed 
from short pulses up to the continuous waves. 

  
 2. OLD and NEW Methods 
 It is assumed that the Eq.(1) possesses the only one solution. Of course every function 

can be represented in many ways. Therefore we suppose that the solution P of Eq.(1) can be 
represented by the series Ro  which is defined by the right side of the formula (4) or by the 
series R given be Eq.(5)  
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where: - Fourier spectrum ; N – effective dimension of the representation 
; Theoretically , thenο ; - quasi spectrum; M – effective 

dimension of the representation R. Theoretically , thenο ; - dimensionless 
filling frequency of the boundary pulse (carrier frequency), number of cycles with the period 
of 
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Now – we will explain what we mean here by terms “OLD” and “NEW” method or 

“OLD”, “NEW” representation. 
The black bold plots below and above on Fig.2 represent typical pulse time shape and 

the envelope of their Fourier spectrum obtained from calculations or measurements under 
conditions of the nonlinear propagation. 

The formula (4) represents the decomposition of the disturbance into Fourier series in a 
given point in space- that means on superposition sin waves unbounded in time. Vertical lines 
on Fig.2 correspond to coefficients C  of this decomposition. They are calculated after the 
substitution of this formula into the nonlinear wave propagation equation (1). And the 
procedure based on representation (4) we call here as OLD method. This is standard 
representation used from dozen years especially for description and numerical calculations of 
the axis symmetrical nonlinear acoustical field propagation (C  see [6]). 

n
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By NEW method we mean the treatment which is based on the formula (5). In this case 

the disturbance is presented as the superposition sin waves of bounded in time (we may say 
wavelets) with carrier frequencies being harmonics in respect to the 
fundamental carrier , . Middle part of Fig.2 illustrate symbolically this idea. 
The series (5) can be interpreted as the quasi Fourier (because depends on time 
however slowly in respect to ) superposition of pulses with the envelopes of 
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carrier frequencies of . The assumed shape of the solution (5) is a mathematical 
formalization of a observation series of spectra of nonlinear disturbances which are obtained 
in numerical simulations, observed experimentally, and also after analyzing the influence of 
the nonlinear term on the disturbance. 

The Fourier spectrum of the disturbance ,  can be interpreted 
as the superposition of wavelets Fourier spectra 
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The spectral structure of (6) was shown schematically in Fig.2 by separation of 
components  of the sum (6). In Fig.2 it was shown that the successive 
components of the sum can of course  “overlap – intersect “ themselves more or less 
depending on the relative band width (calculated in relation to ) it means depending on 
the duration time and on the shape of the envelope of the wavelet. Although the 
frequencies
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cn  are distinguished in the notation (5) and (6) it does not mean that they 

are the coordinates of local spectral maxima. It results from the experiment, numerical 
calculation and theoretical considerations that there can exist and exists a small shift of the 
frequency of the local spectral maximum to the position n  caused by the 
geometry of the source (especially in the case of an array) by dispersion (absorption) in the 
medium and quasi dispersion. One should stress that the notations (5),(6) do not contain 
limitations excluding the above described and showed in Fig.2 phenomena, although it clearly 
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accentuated the fundamental sound and its harmonics . In the middle part of the figure there 
are shown schematically reconstruction of the wavelets from their 
spectra  and in bottom the reconstruction of disturbances from the 
wavelets.  
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Strictly NEW representation together with nonlinear wave equation produces several 
methods of different rank of accuracy and complication which permit to determine . It is an 
interesting however, very wide problem. Therefore in this paper we limit our presentation to 
the results obtained by means of the simplest method results from (1),(3),(5) .  

mP

If Ro and R are solutions of the same boundary problem then of course . For 
and R obtained numerically it can be only .  However, it can be easily shown 

that for the acceptable differences of ϑ  the relationship between effective dimensions of the 
disturbance representation  (4),(5) is the following . 
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Cost of calculations of the nonlinear interaction is proportional to  i.e. depends on the 

actual dimension  (N or M) of the representation of P. That means; approximate relation 
between costs of the NEW and OLD methods is proportional to 1 , memory reservation 
to Nc1 (for methods presented in this paper) 
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Fig. 2. Decomposition of the , throughout wavelets ,          
their Fourier spectra , in to full spectrum  and back. 
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2. COMPARISION NEW/OLD 
 

We show below in common plots the results of numeral solutions of Eq.(1) by means of 
the method using  representations (4) –OLD METHOD and representations (5) – NEW 
METHOD. Solved was an axially symmetric problem (Fig.1 – left). As the source a circular 
transducer 30 mm in diameter, with the geometrical focus 5 mm, excited by pulses with 
rectangular envelope of the frequency 2 MHz with the pressure amplitude  Po = 0.25 MPa 
was used. A uniform apodisation along the axis r was assumed. Two cases were calculated; a 
short 2 cycles excitation time  (Fig.3) and long excitation time of 8 cycles (Fig.4). 

The comparison of the two methods, for the case of boundary conditions leading to the 
problems of 3 D+t (Fig.1 – right), was in our case impossible as explained in the introduction. 
It should be noted that the requirements of the numerical code, which is based on the NEW 
method, are much higher in its simplest version for calculations of circular sources than for 
sources the array type. It results, paradoxically, from the ordering of the field (higher 
symmetry for the circular source). So, if the numerical code operates successfully for circular 
sources, it works for other sources too.  
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Fig. 3. Comparison NEW-OLD methods. Short time excitation- two cycles. 
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Fig. 4. Comparison NEW-OLD methods. Long time excitation- eight cycles. 
 

Time of the calculations for OLD method-8 hours; for NEW method-15 minutes. 
 

3. CONCLUSION 

At the begin we noted that the OLD method is used in our considerations as the 
reference method. The obtained results show a satisfactory agreement in amplitude and an 
excellent in phases, independently of the pulse duration. Differences between them are visible 
in the small time scale, it means that they are formed at very high frequencies. One can 
observe that the agreement rapidly increases with the distance from the beam axis.  
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