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The analysis of the nonlinear signals or systems is insufficient using the power spectrum 
and autocorrelation function. We do not have complete information about such signals or 
systems, because of the loss of the phase information in the power spectrum and 
autocorrelation function. The analysis of the nonlinear phenomena is more effective using 
higher order statistics (HOS). In this paper, the basic definitions and properties of HOS are 
discussed. It is defined the quadratic phase coupling phenomenon (QPC) and numerical 
results aimed at analysing phase coupling depending on the frequency and amplitude changes 
are presented. 
 
 

INTRODUCTION 

The abbreviation HOS means Higher Order Statistics and it is assumed to define the 
term as nth-order moments or cumulants (nonlinear combination of moments) of random 
signals. In the frequency domain it corresponds to them Higher Order Spectra (also known as 
polyspectra), which are, by definition, multidimensional Fourier transforms of higher order 
statistics (moments or cumulants). Particular cases of higher order spectra are the third-order 
spectrum called the bispectrum and the fourth-order spectrum, called trispectrum, which are 
the Fourier transforms of the third-order and fourth-order statistics adequately. Thus the 
power spectrum is a part of the class of higher order spectra, i.e. it is a second-order spectrum. 
The power spectrum or power spectral density and auto-correlation function provide very 
useful information in the design and analysis of the linear predictive systems. However they 
do not give complete information, because they ignore the existence of deterministic 
mechanisms, which generate signals with so-called flat or near-to-flat densities. For example, 
music and speech signals are created mechanically by systems with non-linear characteristic 
of dynamics. Therefore, prediction and coding quality of such signals can be perfected by 
utilize of additional information contained in the signal and thus we should use the higher 
order statistics [11].  
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As it was mentioned above the higher order statistics and spectra can be defined in 
terms of moments and cumulants. The estimation of the higher order spectra on the basis of 
moments is more useful in the analysis of deterministic signals, both periodic and transient, 
whereas the estimation of the higher order spectra on the basis of cumulants is more useful in 
the analysis of stochastic signals. In general case there are several arguments to use higher 
order statistics in signal processing. First of all they are „resistant” to Gaussian noise. From 
the Gaussian property of signal it follows that all cumulants of order greater than two have 
value zero. Therefore, if a non-Gaussian signal is received with additive Gaussian noise, 
its transformation to the higher order cumulant domain will eliminate the noise. In this 
connection we can employ the higher order statistics to detection and estimate parameters of 
the signals. In particular, cumulant spectra can become high signal-to-noise ratio (SNR) 
domains in which one may perform detection, parameter estimation or even entire signal 
reconstruction [4]. Moreover the higher order statistics make possible the identification of 
non-minimum phase systems and reconstruction of non-minimum phase signals. It results 
from the property of HOS (in terms of moments and cumulants); they preserve phase 
information of signals. Additionally it becomes possible the detection and analysis of non-
linear property of signal and identification of non-linear systems, because the most of real 
observed signals have non-Gaussian character and thus their higher order spectra are non-
zeros. The higher order statistics have application in a lot of science fields such as 
communications, processing of seismic data, plasma physics, optics, hydroacoustics, etc. 
 

1. DEFINITION AND PROPERITIES OF HOS 
 

As it was mentioned above, the particular cases of higher order statistics are second, 
third and fourth order and their adequate Fourier transforms: power spectrum, bispectrum and 
trispectrum. Hence the discussion will be limited only for them. Consider the real, stationary, 
discrete-time signal , for t  and if its moments up to n order exist, then 
in general case [4] 
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is the nth-order moment function of the signal and τ , (τ  for  
all i) are the temporal (or spatial) lags.  is an operator of statistical expectation. Evidently 

 is the 2nd-order moment function (autocorrelation function) of  and  
and  are the 3rd- and 4th-order moment functions, adequately.  
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 If we assume that has zero-mean value than cumulant functions (which are defined 
as combinations of moments) can be written as (for n = 2, 3 and 4) [3] 
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Notice, if  is zero-mean, the 2nd- and 3rd-order cumulants are equal to the 2nd- and 3rd-
order moments, respectively but to create 4th-order cumulant it is necessary to know the 4th-
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and 2nd-order moments. By putting zero lags, i.e. τ  we obtain well-known 
statistical relationships 

032 === ττi

2
2 ]xγ−

[ ])(ωτ

[ ])( 2211 τωτω +− j

( 211 τωτω +− j

)22 ϕωω +t

)]([)0( 2
22 txEc xx == γ                         (variance) 

)]([)0,0( 3
33 txEc xx == γ                      (skewnees) 

4
44 [3)]([)0,0,0( xx txEc γ ==     (kurtosis) 

(5) 

 In the frequency domain the higher order spectra are defined as the multidimensional 
Fourier transforms of cumulant functions (and of moments, what was mentioned above), 
beginning from the power spectrum as follows 
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where πω ≤ . In the similar way, we can write the relationships of bispectrum 
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where πωωπωπω ≤+≤≤ 2121 ,, , and trispectrum: 
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where πωωωπωπωπω ≤++≤≤≤ 321321 ,,, .  
 The cumulant spectra are more useful in the processing of random signals than are 
moment spectra for several important reasons [4]: 
– if an analysed signal is Gaussian one than cumulant spectra of order  are zero and thus 

from non-zero spectra we can determine an extent of non-Gaussianity, 
2〉n

– cumulants provide a suitable measure of the extent of the statistical dependence in time 
series, 

– the cumulant of two statistically independent random processes equal the sum of the 
individual random processes, whereas the same is not true for higher order moments. 

In particular, this last property enables us to use the cumulants as an operator, what is more 
practical and much easier. 
 

2. QUADRATIC PHASE COUPLING  
 

 In many papers we can find a qualification that power spectrum and 
autocorrelation function are phase blind. It comes from the fact that phase relationships of 
signals are lost in the power spectrum and in the autocorrelation function. The higher order 
spectra make possible detection and quantitative description of nonlinearities in signals (not 
only stochastic). Such signals arise, when they are passed through the systems with nonlinear 
characteristic. In practice, we meet situation very often, in which two harmonic signals are 
passed by the nonlinear system. Consider the signal 
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which is passed trough the simple quadratic nonlinear system 
)()( 2 txath =  (10) 



where a is non-zero constant. On the output of the system, the signal will include the 
harmonic components: , ,  and .  
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Such phenomenon, which produces a formation of these phase relations, is called quadratic 
phase coupling (sometimes it is met a definition – phase coupling of the second order). Note 
that these phase relations are identical as the frequency relations. The power spectrum always 
is to show the peaks on the same positions (related to the frequencies) irrespective of the 
phases of sinusoids – the information about phase relations is lost. Thus, in order to obtain the 
information we should use the higher order spectra. Moreover, if we have exact information 
about the input and output signals of the system, than we can use the higher order spectra to 
the identification of nonlinear systems. Sometimes we deal with situations that a nonlinear 
system is excited by the independent sinusoidal sources and it is to generate a harmonic signal 
with quadratically coupled frequency pairs. Hence identification of these pairs makes possible 
us to identify some characteristics about the system and also the number of the independent 
sources.  
 In general, if we have a signal that is composed of three sinusoids with frequencies and 
phases ,  and ( respectively, than sinusoids 1 and 2 are said to be 
quadratically phase coupled (QPC) if and only if 
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Note the pairs and  are unordered QPC pair. In general the harmonic signal 
 may be composed of  k (let assume complex) sinusoids 
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 Because one sinusoid can be coupled to itself, so there is the interesting question: how 
many different phase coupled pairs can appear in such signal? Assume that p is the number of 
sinusoids coupled to itself and s will be the total number of unordered pairs of sinusoids in the 
signal. Then the total number of the ordered pairs is 2s, whereas the total number of different 
ordered pairs are 2s–p. Hence the different ordered QPC pairs we can simply obtain as 
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where 1 . In the case of the harmonic signals, it is a summation of sinusoids with 
zero mean that is why the third order cumulants of these signals are equal to the third order 
moments (3). Since the integration sinusoid from 0 to 2π is zero, the third order cumulant of 
signal  we can write as 
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where q is the number of different ordered coupled sinusoids in . It is important to 
observe that in eq. (14), only the phase coupled components appear. Hence the bispectrum 
function is the useful tool for detection of the quadratic phase coupling.  In many publications 
we can find the terms: a normalized higher order spectrum or nth order coherency index. Both 
the terms determine functions that combine the nth order cumulant spectrum with the power 
spectrum. The coherency indexes of 3rd- and 4th-order are adequately defined as 
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and they are very useful in the detection and characterization of nonlinearities in time series 
and in discriminating linear processes from nonlinear ones [4]. Moreover we can use the 3rd 
order coherency index for detecting quadratic phase coupling phenomena and therefore the 
suitable estimation of the bispectrum function is very important. There are several techniques 
of bispectrum estimation, which can be used for analysis quadratic phase coupling. But the 
conventional techniques on the basis of the Fourier transform and parametric methods (AR 
and ARMA) are used most often. Both the methods have some advantages and a number of 
limitations. In general, the conventional techniques are better suitable as quantifiers of the 
quadratic phase coupling and the parametric methods offer the promise of high resolution and 
are used more often as detectors. More information about the bispectrum estimation and 
methods of QPC estimation are available in [4], [7], [8] and [9]. 
  

3. NUMERICAL RESULTS 
 

 The Matlab is an interactive open computational environment, which integrate  
a numerical analysis, matrix operations and signal processing. Therefore it can be  
a very good tool in the analysis of QPC phenomena, especially if we use the HOSA toolbox.  
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Fig. 1. An example of two sinusoids: the first – 10 Hz; the second – 6 Hz 
 



Thus program in Matlab language was written and it was used for the QPC analysis. The 
program carries out the following operations: 
– generates two sinusoids; 
– adds these two sinusoids (9); 
– squares the sum of the sinusoids (10); 
– computes the Discrete Fourier Transform (FFT function) of such signal; 
– using the standard matlab function – qpctor, detects the quadratic phase coupling and 

computes the value of the bispectrum function for the phase coupled components. 
 The first sinusoid on frequency 10 Hz is constant, whereas the frequency of the second 
sinusoid can be changed from 1 to 20 Hz with step 1 Hz.  Both sinusoids are sampled with 
frequency equal to 128 Hz and the time of the observation is 2 seconds. The sampled 
frequency was chosen for the sake of the better estimation of FFT (128 is a power of two) and 
the time of the observation was chosen for the sake of the frequency 1 Hz (we have two full 
periods in 2 seconds). Figure 1 illustrates two sinusoids with frequency 10 Hz and 6 Hz 
respectively.  Figure 2 depicts sum of these sinusoids and they square. To eliminate the 
constant component, the square of the sum of the sinusoids was reduced about the mean. 
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Fig. 2. The sum of two sinusoids and they square 
 
 As was mentioned above, the standard matlab function – qpctor was used for the 
detection of QPC. This function detects quadratically phase coupled harmonics using the 
TOR (Third Order Recursion) method and computes the bispectrum value for the 
quadratically coupled components. The syntax of qpctor is: 
 

[arvec, bspec] = qpctor (y, maxlag, ar_order, nfft, samp_seg, overlap, flag) 
where: 
y – the data matrix; each column of y is assumed to correspond to a different realization. 



maxlag – specifies the maximum number of third-order cumulant lags, c , to be used. ),(3 ττx

ar_order – specifies the AR order to use.  
nfft – specifies the FFT length; its default value is 64. 
samp_seg – specifies the number of samples per segment; the default value is the length of the 
time series, or the row dimension if y is a matrix. 
overlap – specifies the percentage overlap between segments; maximum allowed value is 99; 
default value is 0; the parameter is ignored if y is a matrix. 
If flag is biased, then biased sample estimates of cumulants are computed (default); if the first 
letter is not ’b’, unbiased estimates are computed. 
arvec – the vector of estimated AR parameters. 
bspec – the estimated parametric bispectrum. It is an nfft/2-by-nfft array whose upper-left 
hand corner corresponds to the origin in the bispectral plane. 
 The original qpctor function was modified in a not large degree and it was used with the 
following parameters:  

qpctor (y, 72, 48, 128) 
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Fig. 3. Three plots coresponding to the input frequencies: 10 and 6 Hz  
 

Figure 3 illustrates three plots corresponding to our input frequencies.  Notice that four peaks 
(corresponding to the frequencies 4, 12, 16 and 20 Hz) occur in the power spectrum plot and 
frequencies 4, 12, 16 and 4, 16, 20 form two quadratically coupled triplets (Estimated 
Parametric Bispectrum plot). The singular values plot shows two groups of significant 
singular values (four in each) corresponding to these two triplets. The values of the 
parameters in the qpctor function were selected for the sake of the range of the second 
frequency changes (1 to 19 Hz) and to get high resolution. Moreover the bigger values of the 
maxlag and ar_order give better results hence it was used the values 72 and 48 adequately.  
 The test was performed in two stages: 



1. For the constant frequency 10 Hz of the first sinusoid, the second was changed from 1  
to 19 Hz without 10 Hz with step 1 Hz; the amplitude of the both sinusoids was 1, 

2. For the frequencies 10 and 6 Hz of the sinusoids, the amplitude of the second was 
changed from 0,1 to 1; the amplitude of the first sinusoid was 1. 

 In the both cases, the initial phase was zero. The experiment was aimed at analysing the 
quadratic phase coupling and the bispectrum value depending on the frequency changes and 
amplitude changes. The results are shown in Table.1 and Table.2. 
 

Tab. 1. Bispectrum value for QPC triplets depending on frequency f2 (f1 constant – 10 Hz) 

Power Spectrum Components [Hz] QPC triplets [Hz] f2 

[Hz] 2 ⋅ f1 2 ⋅ f2 f1 - f2 f1 + f2 f1 j f2 i f3 I 

Bispectrum Value 
⋅10 6  

9 11 20 10,8391 1 20 2 9 11 
2 9 11 6,1696 
4 8 12 1,9600 2 20 4 8 12 
8 12 20 1,1880 
6 7 13 2,9302 3 20 6 7 13 
7 13 20 2,0745 
6 8 14 4,1609 4 20 8 6 14 
6 14 20 3,8215 
5 15 20 0,4124 5 20 10 5 15 
5 10 15 0,3364 
4 12 16 1,8349 6 20 12 4 16 
4 16 20 0,6424 
3 14 17 0,9160 7 20 14 3 17 
3 17 20 0,5071 
2 16 18 0,3260 8 20 16 2 18 
2 18 20 0,1354 
1 19 20 0,1129 9 20 18 1 19 
1 18 19 0,1101 
1 20 21 0,0611 11 20 22 1 21 
1 21 22 0,0610 
2 20 22 0,1287 12 20 24 2 22 
2 22 24 0,0416 
3 20 23 0,1969 13 20 26 3 23 
3 23 26 0,0934 
4 20 24 0,1642 14 20 28 4 24 
4 24 28 0,0592 
5 20 25 0,1145 15 20 30 5 25 
5 25 30 0,0571 
6 20 26 0,1123 16 20 32 6 26 
6 26 32 0,0620 
7 20 27 0,0786 17 20 34 7 27 
7 27 34 0,0507 
8 20 28 0,1240 18 20 36 8 28 
8 28 36 0,0534 
9 20 29 0,1460 19 20 38 9 29 
9 29 38 0,0582 



Tab. 2. Bispectrum value for QPC triplets depending on the mplitude of f2 (f1 = 10 Hz, f2 = 6 Hz, 
amplitude of f1 is 1; power spectrum components 4, 12, 16, 20 Hz) 

QPC triplets [Hz] Amplitude   
Af2 f1 i f2 i f3 i 

Bispectrum Value 
⋅10 6  

4 12 20 - 0,1 4 16 20 0,0223 
4 12 20 0,0190 0,2 4 16 20 0,1044 
4 12 20 0,0509 0,3 4 16 20 0,1941 
4 12 20 0,1211 0,4 4 16 20 0,2833 
4 12 20 0,2862 0,5 4 16 20 0,4047 
4 12 20 0,5657 0,6 4 16 20 0,5201 
4 12 20 0,9088 0,7 4 16 20 0,5973 
4 12 20 1,2740 0,8 4 16 20 0,6412 
4 12 20 1,6118 0,9 4 16 20 0,6581 
4 12 20 1,8349 1,0 4 16 20 0,6424 

 
 Analysis of the problem stated above and the results shown in the Tab.1 may be 
discussed as follow: 
– the quadratic phase coupling was occurred in all cases and two quadratic coupled triplets 

were observed for each realization (for each pair of input frequencies), 
– the bispectrum value is so much the bigger if the two first harmonics of the QPC triplets 

(f1 i  and f2 i) are closer to each other, 
– the bispectrum value is bigger if the two first harmonics of the QPC triplets  

(f1 i and f2 i) are sum and difference of the input frequencies. 
Hence the biggest value of the bispectrum for f2 = 1Hz and QPC triplet 9, 11, 20 Hz. The 
frequencies 9 and 11 Hz are difference and sum of the input frequencies 10 an 1 Hz 
respectively. You may notice that we have one exception to these rules – for f2 = 5 Hz. It is an 
error, which results from the application of numerical computation and from value of 
sampling frequency (number of samples).  
 It was tested the dependence of the bispectrum value on the amplitude changes of the 
second sinusoid in the second stage (Tab.2). It was chosen two frequencies 10 and 6 Hz 
because the difference and sum of these frequencies are 4 and 16 Hz adequately and they are 
power of two. So it was expected to receive the exacter results. We may observe that the 
bispectrum value rises with the increase of the amplitude f2. For Af2  = 0,1 only one peak of 
QPC triplet (4, 16 and 20 Hz) occurs – 4 and 16 Hz are the difference and sum of the input 
frequencies. But for Af2  = 0,2 the second peak (4, 12 and 20 Hz) appears and the bispectrum 
value rises faster than the value of the first, for Af2  = 0,6 it is bigger. It follows from the fact 
that the frequencies 4 and 12 Hz are closer to each other. 



4. CONCLUSIONS 
 

 The higher order statistics, i.e. third-order cumulants and bispectrum are extensively 
developed in the literature. In particular they are insensitive to any symmetrically distributed 
noise and also exhibit the capability of better characterising non-Gaussian signals. By 
exploiting these HOS properties, it is possible to devise a robust method for identifying and 
classifying signals affected by noise with different distributions and even with very low 
signal-to-noise ratios. 
 All real signals that are normally called „periodic” have some amplitude and phase 
variation from period to period. The evaluation and statistical description of the amplitude and 
phase variation of the hydroacoustic signals using the quadratic phase coupling model is very 
promising approach in signal processing for object recognition in underwater environment. 
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