PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental and theoretical study of surface cooling using a single microjet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experimental research of heat transfer due to impingement of a single microjet of water and air has been studied on a specially designed rig. Systematic data on radial wall temperature distribution were collected, which enabled development of empirical correlation for heat transfer coefficient applicable both for air and water flows. Two microjet nozzle diameters were studied, i.e. 180 and 260 ěm. The correlation describing the heat transfer coefficient was later used in validation of a model of a single microjet impinging on a flat plate, developed earlier by the authors. Such analytical model of microjet is of a great value in future analysis as it enables to carry out for example sensitivity tests or to appropriately select operational parameters. The presented model is quite general and its further modifications are possible when some of the imposed assumptions are relaxed. More experiments on the structure of a single microjet are needed which will confirm the correlation presented in the paper.
Rocznik
Tom
Strony
95--110
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Heat Technology Department, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Kercher D.S., Lee J., Brand O., Allen M.G., Glezer A.: Microjet cooling devices for thermal management of electronics. IEEE Trans. Comp. Pack. Technol. 26(2003), 359–366.
  • [2] Wang E.N., Zhang L., Jiang L., Koo J.-M., Maveety J.G., Sanchez E.A., Goodson K.E., Kenny T.W.: Micromachined jets for liquid impingement cooling of VLSI chips. J. Microelectromech. Syst. 13(2004), 833–842.
  • [3] Hayes D.J., Wallace D.B., Cox W.R.: Microjet printing of solder and polymers for multi-chip modules and chip-scale packages. Proc. SPIE Int. Conf. High Density Pack. MCMs. 3830, 1999, 242 247.
  • [4] Sibailly O.D., Wagner F.R., Mayor L., Richerzhagen B.: High precision laser processing of sensitive materials by microjet. Proceedings of the Fourth International Symposium on Laser Precision Microfabrication, 2003, 501–504.
  • [5] Fletcher D.A., Palanker D.V.: Pulsed liquid microjet for microsurgery. Appl. Phys. Lett. 78(2001), 1933–1935.
  • [6] Blumenkranz M.S., Palanker D.V., Fletcher D., Miller J.: A pulsed liquid microjet for ocular microsurgical applications. Inv. Ophthalmol. Vis. Sci. 42(2001), S717–S1717.
  • [7] Fletcher D.A., Palanker D.V., Huie P., Miller J., Marmor M.F., Blumenkranz M.S.: Intravascular drug delivery with a pulsed liquid microjet. Arch. Ophthalmol. 120(2002), 1206–1208.
  • [8] Mohanty A.K., Tawfek A.A.: Heat-transfer due to a round jet impinging normal to a flat surface. Int. J. Heat Mass Transfer 36(1993), 1639–1647.
  • [9] Lee J., Lee S.J.: Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp. Heat Transfer 12(1999), 137–156.
  • [10] Tuckerman D.B., Pease R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett. EDL-2(1981), 126–129.
  • [11] Bowers M., Mudawar I.: High-heat flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks. Int. J. Heat Mass Transfer 37(1994), 321–332.
  • [12] Liu X., Lienhard V.J.H., Lombara J.S.: Convective heat transfer by impingement of circular liquid jets. J. Heat Transfer 113(1991), 571–582.
  • [13] Zhang L., Koo J.-M., Jiang L., Asheghi M., Goodson K.E., Santiago J.G., Kenny T.W.: Measurements and modeling of two-phase flow in microchannels with nearly-constant heat flux boundary conditions. J. Microelectromech. Syst. 11(2002), 12–19.
  • [14] Webb R.L.: Next generation devices for electronic cooling with heat rejection to air. Trans. ASME 127(2005), 2–10.
  • [15] Bar-Cohen A., Arik M., Ohadi M.: Direct liquid cooling of high heat flux micro and nano electronic equipment. Proc. of the IEEE 94(2006), 1549–1570.
  • [16] Agostini B., Fabbri M., Park J.E., Wojtan L., Thome J.R., Michael B.: State of the art of high heat flux cooling technologies. Heat Transfer Engineering 28(2006), 258–281.
  • [17] Jiang L., Wong M., Zohar Y.: Phase change in microchannel heat sinks with integrated temperature sensors. J. Microelectro-mechanical Systems 8(1999), 358–365.
  • [18] Stevens J., Webb B.W.: Local heat transfer coefficients under an axisymmetric, single-phase liquid jet. J. Heat Transfer 113(1999), 71–78.
  • [19] Womac D.J., Ramadhyani S., Incropera F. P.: Correlating equations for impingement cooling of small heat-sources with single circular liquid jets. J.Heat Transfer 115(1993), 106–115.
  • [20] Garimella S.V., Rice R.A.: Confined and submerged liquid jet impingement heat-transfer. J. Heat Transfer 117(1995), 871–877.
  • [21] Li C.Y., Garimella S.V.: Prandtl-number effects and generalized correlations for confined and submerged jet impingement. Int. J. Heat Mass Transfer 44(2001), 3471–3480.
  • [22] Ma C.F., Bergles A.E.: Jet impingement nucleate boiling. Int. J. Heat Mass Transfer 29(1985), 1095–1101.
  • [23] Vader D.T., Incropera F.P., Viskanta R.: Convective nucleate boiling on a heated surface cooled by an impinging planar jet of water. J. Heat Transfer 114(1992), 152–160.
  • [24] Wolf D.H., Incropera F.P., and Viskanta R.: Local jet impingement boiling heat transfer. Int. J. Heat Mass Transfer 39(1996), 1395–1406.
  • [25] Mikielewicz D., Mikielewicz J.:Surface cooling by means of axially symmetrical liquid jets. Gdansk University of Technology Publishers, Gdansk 2005.
  • [26] Mikielewicz D., Mikielewicz J.: Analytical model of single microjet cooling of electronic equipment. Proc. of the Sixth Int. ASME Conf. on Nanochannels, Microchannels and Minichannels, ICNMM2008, June 23-25, 2008, Darmstadt, Germany, paper ICNMM2008-62173.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0006-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.