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Abstract

Transient flows in closed conduits are of interest from over a century, but the dynamic interaction
between the fluid and the pipe is taken into consideration more thoroughly just from a few
decades. A standard model of the phenomenon consists of fourteen first order partial differential
equations (PDE), two for a one-dimensional (1D) liquid flow and twelve for 3D pipe motion.
In many practical cases however, a simpler four equations (4E) model can be used, where 1D
longitudinal pipe movement is assumed. A short description of waterhammer event with fluid-
structure interaction taken into account is presented in the article. The 4E mathematical model
is presented in detail with the assumptions and main algorithms of computer program that has
been developed. Two phase flow is assumed not to take place, but the friction between the
liquid and the pipe wall are taken into consideration. A method of characteristics (MOC) with
time marching procedure is employed for finding the solutions, but instead of direct solving the
resulting finite difference equations (FDE) the “wave method” is proposed. Some other important
elements of the algorithm are presented and selected results of numerical computations as well.

Keywords: Waterhammer; Transient pipe flow; Fluid-structure interaction (FSI); Numerical

modeling; Method of characteristics

Nomenclature

Ac, As – fluid and pipe cross section area, m2

c, cs – fluid and pipe elastic wave celerity, m/s
D – inner diameter of a pipe, m
E – Young modulus of pipe material, Pa
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e – thickness of a pipe wall, m
G – shear modulus of pipe material, Pa
g – gravity constant, m/s2

I – area moment of inertia, m4

I0 – polar area moment of inertia, m4

K – bulk modulus of liquid, Pa
L – length of a pipe, m
M – moment of force at pipe section, Nm
p – pressure, Pa
v – liquid velocity, m/s
w – pipe longitudinal velocity, m/s
Q – force acting at pipe section, N
t, x – time and space coordinates, s, m

Greek symbols

α – angle between the pipe and horizontal direction
λ – Darcy-Weisbach friction factor
ν – Poison ratio of pipe material
ρ – liquid density, kg/m3

ρs – pipe material density, kg/m3

σ – longitudinal stresses in pipe material, Pa
τs – shear friction stresses, Pa
ω – angle velocity of a pipe, 1/s

1 Introduction

Unsteady flow in a pipe that may appear in certain circumstances, as sudden valve
closure, may cause undesired effects that are well characterized by the alternative
name of the process – waterhammer (WH). These effects are strictly connected
with the interaction between the liquid and the pipe and its supports. Though the
problem of WH has been defined and investigated [1–4] for over a hundred years
the classical approach does not take into consideration the dynamic interaction
[5–9] between the liquid and the pipe. Instead, not moving structure is assumed
with the fluid-pipe interaction being modeled as quasi-static.

The important formula applied for thin-walled pipe circumferential stresses
determination as a function of pressure is defined by

σc = p
D

2e
. (1)

This formula is still valid in the case of dynamic FSI as usually radial inertia of
the liquid and the pipe is neglected. The pressure increase ∆p as a result of liquid
velocity change ∆v in a simple WH event is given by Joukovsky formula

∆p = −ρc∆v . (2)
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It is worth noticing the similarity of the above equation with that one between
the pressure and velocity of a fluid media particle in the acoustic plane wave.
Obviously the elastic waves produced by WH events are more complex as the
fluid-in-pipe medium is. This fact is visible in the classic formula for the celerity
c of elastic disturbances propagation in the liquid, that takes into account the
pipe wall elasticity in the shape of the denominator of expression

c =

√

K
ρ

√

1 + ψKD

Ee

, (3)

where ψ is a non-dimensional parameter equal or slightly less than 1. Its discussion
in different quasi-static cases was made in [1] and one of the formulas developed
there and still valid in the dynamic FSI case [7] is given by equation

ψ = 1− ν2 . (4)

In general case of WH to determine p, v as a function of position x and time t
one should solve the partial differential equations (PDE) governing the process.
This makes also possible taking into account other effects like the friction between
the liquid and the pipe wall. It was done at the very early stage of WH theory
development and the quasi-steady model of energy losses was employed. This
model does not fit the physics of the transient well, but is still quite popular
though many unsteady models were developed [2,4], used and examined [10,11].
In fact friction is one of the three elements of FSI pointed out in literature [6,9],
though the weakest one. It is also a standard that if the pipe wall movement is
taken into account the relative velocity of the liquid and the pipe wall is considered
in the friction shear stresses formulas. The shear stresses due to pipe wall friction
for quasi-steady approximation are then defined as

τs = λρ
(v − w) |v − w|

8
. (5)

The second and stronger element of dynamic FSI is the Poisson coupling. Cir-
cumferential stresses produce circumferential strains and due to the Poisson effect
also the longitudinal ones that propagate as elastic waves in the pipe wall. The
reverse process influences the pressure of the liquid and as these changes prop-
agates much faster than the elastic waves in liquid (about 3–4 times in typical
situation of water in metal pipe) this effect is known as the precursor wave.

Another element of dynamic FSI occurs when the pipe junctions are able to
move what may cause very strong influence on liquid flow parameters. This effect
is of great importance especially for non 1D piping as the moving junction may
induce coupling, due to boundary conditions, between different modes of pipe
vibrations (lateral, longitudinal, torsional).
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2 Assumptions and standard model

In Fig. 1 the model of a straight, prismatic pipe element is presented. The main
assumptions taken herein are based on the standard model [9].

Figure 1. The pipe element and the variables used.

The pipe is assumed being straight, thin and prismatic, of circular cross-section,
thin-walled and linearly elastic with buckling not occurring. The flow is one
dimensional and relatively slow (v ≪ c) so the convective terms in fluid equations
are neglected. The liquid is weakly compressible, linearly elastic and its density
changes are small (p ≪ K). Low frequency approximation is used what means
that the radial inertia of the liquid and the pipe wall are neglected. Friction
between the liquid and the pipe wall is taken into account and the quasi-steady
model is employed in the present paper. Damping introduced by pipe material [12]
and cavitation [13] is assumed not to take place.

One dimensional and one phase flow of the liquid towards the Ox direction is
defined by two parameters, the pressure p and the velocity v. The longitudinal
pipe movement is coupled with fluid flow due to Poisson effect and is described by
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the force Qx and displacement ux or alternatively, the longitudinal stress σ and
velocity w. Torsional rotation of the pipe is assumed not being affected by the
liquid. Lateral pipe movement at each of the two planes Ozx and Oyx is described
by Timoshenko beam model for the pipe [14,15], with the liquid being accounted
as an added mass. The input of liquid moment of inertia and the liquid rotational
forces are neglected however. The movement of the system is governed by four
groups of equations: 4 equations for longitudinal direction, 2 for torsional and
twice 4 equations for lateral vibration of the containing-fluid-pipe. The modes of
different groups are uncoupled for an individual straight pipe reach, but the cou-
pling may appear at junctions due to boundary condition. The system movement
is than described with 14 variables and governed by 14 linear PDE.

The longitudinal movement of the pipe coupled with the liquid flow is governed
by 4 PDE, two equations for the liquid (momentum and continuity)

∂v

∂t
+

1

ρ

∂p

∂x
= −gsinα− 4τs

ρD
, (6)

∂v

∂x
+

1

ρc2
∂p

∂t
= 2ν

∂w

∂x
, (7)

and two for the pipe

∂w

∂t
− 1

ρs

∂σ

∂x
= −g sinα+

τs
eρs

, (8)

∂w

∂x
− 1

ρsc2s

∂σ

∂t
= − νD

2Ee

∂p

∂t
. (9)

The gravity term is also taken into account with α being the angle between the
horizontal direction and Ox axis, positive if measured counter-clockwise. The
velocity c was defined in Eq. (3) and the velocity of longitudinal elastic waves in
pipe wall is

cs =

√

E

ρs

. (10)

The second group of two equations describe torsional vibrations of the pipe

∂ωx

∂t
− 1

ρsI0

∂Mx

∂x
= 0 , (11)

∂ωx

∂x
− 1

GI0

∂Mx

∂t
= 0 . (12)
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For lateral vibrations at the Oyx plane the Timoshenko beam model is given with
the following equations:

∂wy

∂t
+

1

m

∂Qy

∂x
= 0 , (13)

∂wy

∂x
+

1

T

∂Qy

∂t
= ωz , (14)

∂ωz

∂t
− 1

b

∂Mz

∂x
= −1

b
Qy , (15)

∂ωz

∂x
− 1

s

∂Mz

∂t
= 0 . (16)

The parameters m, b, T, s are respectively mass linear density (mass per unit
length), moment of inertia linear density, shear stiffness and bending stiffness:

m = ρsAs + ρAc , (17)

T = κGAs , (18)

b = ρsI , (19)

s = EI . (20)

Various formulas can be found in literature for the shear coefficient κ [16,17,18].
Standard approximation for cylindrical thin-walled pipe gives the value of 0.5 [16].
When estimated with the elasticity theory more accurate formulas are obtained
[17,18]. They give for κ values slightly greater than 0.5 and can be cast into the
following general form:

κ = 0.5 + β , (21)

where β = ν/(8 + 6ν) for [17] and β = ν/(4 + 2ν) for [18].
Equations for vibrations at the Ozx plane include also gravity term:

∂wz

∂t
+

1

m

∂Qz

∂x
= −g cosα , (22)

∂wz

∂x
+

1

T

∂Qz

∂t
= −ωy , (23)

∂ωy

∂t
− 1

b

∂My

∂x
=

1

b
Qz , (24)

∂ωy

∂x
− 1

s

∂My

∂t
= 0 . (25)
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3 The basic model and characteristic equations

In many practical situations the 4E (basic) model is sufficient for the proper
description of the system. The Eqs. (6–9) describe coupled and damped elastic
waves propagating in fluid-pipe medium and can be transformed according to
the method of characteristics (MOC). This transformation results in equivalent
equations where only total derivatives with time exist, for the x(t) dependence
being the path of the wave. The final CE [5,9,12] can be written in the following
form [19].

The “liquid” wave is governed by the compatibility equation C1

d

dt
(v + Sw) +

ǫ

c1

d

dt

(

p

ρ
− S σ

ρs

)

= −(1 + S)g sinα− (1−R)
4τs
ρD

, (26)

valid for ǫ = +1 (C1+) or ε = −1 (C1-) and x(t) dependence

dx

dt
= ±c1 = ǫc1 , (27)

that defines propagation towards opposite directions of the Ox axe. The wave
celerity is

c1 =
c√
A
. (28)

The compatibility equations C2 define the “pipe” wave:

d

dt
(Rv − w) +

ǫ

c2

d

dt

(

R
p

ρ
+
σ

ρs

)

= (1−R)g sinα− (1 + S)
τs
ρse

, (29)

dx

dt
= ±c2 = ǫc2 , (30)

c2 = cs
√
A . (31)

The parameters S (S ≥ 0) and R (R ≥ 0) are small (in the cases of interest) non-
dimensional quantities and they are equal to zero if there is no Poisson coupling.
The explicit formulas are:

S =
4νγ

(1− γ + χ) +
√

(1− γ + χ)2 + 4γχν2
, (32)

R = ξS . (33)

The form of the CE and formulas for S, R are valid if following condition holds:

1− γ + χ ≥ 0 . (34)
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In the above equations ξ is the ratio of water-to-pipe mass of the same segment,
χ is the parameter in the denominator of Eq. (3) and γ the square ratio of
longitudinal elastic wave celerities in the open space liquid and in pipe wall:

γ =
Kρs

Eρ
, (35)

χ =
KD

Ee
, (36)

ξ =
Dρ

4eρs

. (37)

Values (35) and (36) can be used in Eq. (34) to get the relation

D

e
+
E

K
≥ ρs

ρ
, (38)

which is seen to be valid for all practical cases.
Parameter A is defined with formula

A =
1 + γ + χ+

√

(1− γ + χ)2 + 4γχν2

2 (1 + χ(1− ν2))
(39)

and in practice is slightly greater than 1 (A = 1 if ν = 0).
For the case of water in steel pipe and D/e = 100, it can be calculated that
S ≈ 0.025, R ≈ 0.08, A ≈ 1.05.

The shape of Eqs. (26) and (29) allows to notice that each of the waves C1 and
C2 is not in fact a pure liquid or pure pipe wave but is a coupled wave according to
the shape of new variables, generalized velocities u(1), u(2) and stresses s(1), s(2):

u(1) = v + Sw , (40)

s(1) = r − S̃q , (41)

u(2) = Rv − w , (42)

s(2) = R̃r + q . (43)

The variables r, q are respectively the normalized (measured in meters per second)
pressure and stress according to the following formulas:

r =
p

ρc1
, (44)

q =
σ

ρsc2
. (45)
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One can also see that the wave celerities c1 (Eq. (28)) and c2 (Eq. (31)) are slightly
changed in compartment to the celerities of the original liquid and pipe waves.

Modified S,R parameters are defined with the following equations:

S̃ = S
c2
c1
, (46)

R̃ = R
c1
c2
. (47)

Looking at the CE as the equations in new variables (40)–(43) seems to be more
convenient as they can be solved in two pairs governing “liquid” and “pipe” waves.
The “wave method” requires however the solution of some specific problems which
are discussed within Section 5.

4 Physical model of the piping and boundary condi-

tions

Mathematical model presented above can be applied to the real system for simple
WH testing. The scheme of the system is presented in Fig. 2 and it consists of
pressure tank at the beginning of the pipe, the pipe itself with a number of rigid
supports and an instantaneously closing valve rigidly mounted to the foundation
at the downstream end.

In such a system three types of boundary conditions (BC) are valid. At the
pressure tank the only condition for the structure is

w = 0 . (48)

Assuming constant pressure pT of the tank during the transient the condition for
the flow is

pT = p+ ζ
ρv2

2
, (49)

where ζ is a minor losses coefficient that can also take into account the pres-
sure change due to dynamic pressure difference between the pipe and the tank.
At the begining of the pipe, only negative compatibility equations C1–, C2– are
valid so with the above BC the four equations can be solved for the four un-
knowns p, v, w(= 0), σ at the junction. At the other end of the pipe the positive
compatibility equations C1+, C2+ are valid and the boundary condition for in-
stantaneously closing valve is

w = v = 0 . (50)

If the pipe is restrained by a number of rigid supports between its both ends the
four BC at each support are the result of equilibrium conditions and are given
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Figure 2. Physical model of the piping.

below for variables of the left (L) and right (R) side of the junction:

wL = wR = 0 , (51)

vL = vR , (52)

pL = pR . (53)

The conditions are becoming more complex if there are minor losses, diameter
change or elastic mounting at the junctions, but these cases are not considered
here. The case of more than two pipes at a junction can be also examined.

5 Numerical method

The goal now is to find the solution for time (t) and position (x) dependence of the
variables of the system. The support structure with (M + 1) supports (0 . . .M)
divides the whole pipe into M individual pipes and each of it is solved separately
with their variables coupled at the junctions. The standard idea is to use the same
time step ∆t for the whole piping. The space size ∆x of the mesh is determined
for each pipe segment and should be the result of time step, pipe parameters and
the necessity to fulfil the CFL condition (Courant, Fredrichs, Lewy) for stability
and convergence [20,2]

CN =
c∆t

∆x
≤ 1 . (54)

It is easy to fulfil the above condition for constant celerity and one wave (classic
WH), just keeping the Courant number CN = 1, what means the selection of
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space grid size satisfying the relation

∆x = c∆t . (55)

In the case of two kinds of waves with different celerities it is not as simple however
and a careful method has to be selected, especially if we want to avoid interpola-
tion because of its known disadvantages. As keeping the condition
CN = 1 is an optimal method that does not introduce numerical dissipation
[2] a wave method of CE integration is proposed. Instead of looking for the four
unknowns of four CE directly we can integrate each pair of CE independently
and look for solutions in u(1), s(1) and u(2), s(2) variables separately. The true
parameters p, v, w, σ can than be found by solving the Eqs. (40)–(43). However
it can be done only at such points of t-x plane that are the nodes of both C1 and
C2 grids. It is possible only if the ratio of wave celerities is a rational number so

c1
c2

=
m1

m2
. (56)

The numbers m1 andm2 are relatively prime integers and have to be not too large
for the method to be practical. To keep them small the celerities of the waves can
be slightly adjusted. It is acceptable, as the physical parameters influencing the
celerities are measured quantities and can be charged with a certain error. In fact
this idea means that we test numerically a slightly different system. But if the
difference in parameters does not exceed a few percent the results are expected
to be consistent with the true ones. So, to keep the proper shape of Eq. (56) we
can slightly change the densities of liquid and pipe material increasing one and
decreasing the other. Such changes have to be taken into account also in other
formulas (see Section 3). Now if the integers m1 and m2 in (56) are known it is
possible to construct the C1 and C2 grids. First, let us compute the distance:

δx =
c1∆t

m1
=
c2∆t

m2
. (57)

The space sizes of C1 and C2 grids are calculated as:

∆x1 = m1δx = c1∆t , (58)

∆x2 = m2δx = c2∆t . (59)

So, for each of CE the Courant number is equal to one (CN1 = CN2 = 1). The
common nodes for both grids lie at the space separation of

∆x = m1∆x2 = m2∆x1 = m1m2δx (60)
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and the variables p, v, w, σ can be calculated at these points. The length L of
individual pipe should be an integer (or even integer for staggered grid) multi-
plication of ∆x distance. Such construction may require approximation, but the
error is small and can always be reduced by decreasing the time step ∆t.

In Fig. 3 the grid is sketched for the case of m1 = 2 and m2 = 3 (for clarity
the paths of the waves are plotted at different time steps) and the common nodes
are marked with bold verticals.

Figure 3. The numerical grid and the paths of C1 and C2 waves for m1 = 2 and m2 = 3.

The solution of each of the CE transformed to finite deference equation (FDE)
is simple if there are no non-linear terms. However because of friction such terms
may exists. In the classic WH literature [1] this type of FDE are solved analytically
for the quasi-steady friction model with a certain scheme of time integration of
the losses. It is quite reasonable however to apply a different method. As the
friction is small the losses may be computed iteratively with the first iteration
taken for the initial velocities. Such method converges quickly and the second
iteration is usually a very good approximation [19,21]. It also allows for easy and
unified implementation of various, even complex unsteady friction models. There
is however another problem to solve. The velocities v and w are both known only
at common nodes of C1 and C2 grids, so the interpolation will be required at
other points. But this time the disadvantage of interpolation is not crucial as it
is used for small friction terms. Moreover, the interpolation of the whole friction
term, instead the velocity, may be done which seems to be a good idea from the
physical point of view. Iteration method can be also employed for the minor losses
determination in BC equations like (49).
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6 Computation results

A piping of a physical model presented in Fig. 2 was assumed for computations
with various number of rigid supports and the following initial water flow param-
eters: pT = 1 MPa, v = 0.66 m/s. Total length L of a steel pipe, pipe diameter
D and pipe-wall thickness e were assumed to be: L = 74 m, D = 37.2 mm,
e = 2.6 mm.

At the following figures the computed time dependences of the flow-move
variables are presented at the end of the piping (2 m before instantaneously closing
valve). All variables (pressures and stresses) on the diagrams are normalized with
formulas (44) and (45) to have the units of velocity [m/s]. In Fig. 4 the pressure
is plotted for the pipe with no inner supports. One can observe the influence
of Poisson effect and the precursor wave as a fast (quasi) rectangular pressure
changes of small amplitude interfered with the pure liquid pressure wave (the
dashed line is the dependence for the case with no Poisson coupling). The pressure
changes have a specific shape which results in higher amplitude at the beginning
of each pulse. This effect is much emphasised on the next diagram (Fig. 5), that
presents the results for the case of piping rigidly restraint at 48 inner supports.
One can see the pressure variations (oscillations) are much faster and the initial
increase of it is sharper what was enlarged in Fig. 6. This kind of effects were
observed at experiments made at the Hydraulic Machinery Department of the
Institute of Fluid-Flow Machinery PAS [10,11]. In the last diagram (Fig. 7) the
variation of structural longitudinal velocities and stresses are presented. Analyses
of the data from Fig. 7 allows to identify the main oscillations to be the result
of a pipe wave travelling and reflecting at boundaries along the ending 4m-long
pipe segment. This is strictly consistent with the celerity ratio being c2/c1 = 4
for this case.

7 Concluding remarks

A description of waterhammer event with fluid-structure interaction taken into
account and the standard model (14E) of the phenomenon was shortly presented
in the article. The basic model (4E) governed by 4 equations was discussed in
a greater detail and the main algorithms of computer program, that has been
developed, were presented. The wave method with suitable computational grid
construction was proposed for finding the solution of resultant CE. The results of
numerical investigations allow to notice that the influence of FSI (Poisson effect)
on pressure variation exist even for relatively rigidly restraint piping. The com-
puted high pressure peaks and fast oscillations were also observed at experimental
data [10,11].
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Figure 4. The pressure-time dependence at the end of the pipe with no inner supports.

Figure 5. The pressure-time dependence for the pipe with 48 inner supports.
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Figure 6. Enlarged part of Fig. 5.

Figure 7. The stress and pipe wall velocity in time for the pipe with 48 inner supports.
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The real importance of these effects however has to be appreciated separately
taking into account the time scales of these runs.

To make the description of WH-FSI process more accurate some of the as-
sumptions pointed at Section 2 can be relaxed. It is impractical however to do it
in one, complex numerical model and they are usually analysed separately for bet-
ter physical understanding. These problems are discussed in classic WH books
[1,2], survey papers [4,6,9] and specialized articles. The way of non-prismatic
pipes treatment is the subject of [22]. Thick-walled pipes are discussed in [23]
and general analyses of curved pipes can be found e.g. in [16]. Frequency domain
approach of WH-FSI process is the subject of [8].

Some other assumptions can be relaxed or generalized for further develop-
ment of the numerical model and computer program. More adequate models of
damping mechanism take into account unsteady liquid – pipe wall friction and
structural damping of the pipe and elastic supports. Elastic BC will also allow
to simulate the influence of junction coupling on the flow-move parameters, what
is especially important when standard model of the phenomenon is implemented.
Another goal of intended development is the two-phase treatment of the flow
[2,13,24] during the transient.
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