PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of interfacial parameters of horizontal two-phase plug flow using a high speed pulse-echo ultrasonic technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a high-speed, multiple-transducers, pulse-echo ultrasonic technique for the measurement of interfacial parameters of horizontal two-phase intermittent flow regimes. The ultrasonic system consisted of an ultrasonic driver, a multiplexer with 4 transducers, and a microcomputer equipped with a data acquisition card, a motion controller card and the Winspect Data Acquisition software. Two transducers were mounted on the top of a 2.1 cm inner diameter circular pipe, while the other two transducers were mounted on the bottom of the pipe. Using instantaneous liquid level measurements from multiple transducers, two-phase flow interfacial parameters in plug were determined, such as the lengths and the velocities of liquid plugs and bubbles, the shape of the gas-liquid interface, and hence instantaneous and cross sectional averaged void fraction and interfacial area. The results showed that the liquid plug velocities as well as the elongated bubble velocity increases with increasing superficial liquid and gas velocities. An experimental correlation for liquid plug velocity was proposed based on the present results. The results also showed that the time and cross-sectional averaged void fraction in the plug flow regime was only slightly influenced by the superficial gas velocity but was not influenced by the superficial liquid velocity.
Rocznik
Tom
Strony
61--76
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • McMaster Institute of Applied Radiation Sciences and Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S 4M1, Canada, sujian@nuclear.ufrj.br
Bibliografia
  • [1] Lightstone L., Osamusali S.I.,. Chang J.S.: Gas-liquid two-phase flow in symmetrically dividing horizontal flow. AIChE J. 37(1981), 111–122.
  • [2] Bertola V.: Experimental characterization of gas-liquid intermittent subregimes by phase density function measurements. Exp. Fluids 34(2003), 122–129.
  • [3] Cook M., Behnia M.: Slug length prediction in near horizontal gas-liquid intermittent flow. Chemical Engineering Science 55(2000), 2009–2018.
  • [4] Cook M., Behnia M.: Pressure drop calculation and modelling of inclined intermittent gas-liquid flow. Chemical Engineering Science 55(2000), 4699–4708.
  • [5] Cook M., Behnia M.: Bubble motion during inclined intermittent flow. Int. J. Heat Fluid Flow 22(2001), 543–551.
  • [6] Fossa M.: Gas-liquid distribution in the developing region of horizontal intermittent flows. ASME J. Fluids Eng. 123(2001), 71–80.
  • [7] Lewis S., Fu W.L., Kojasoy G.: Internal flow structure description of slug flow-pattern in a horizontal pipe. Int. J. Heat Mass Transfer 45(2002), 3897–3910.
  • [8] Sharma S., Lewis S., Kojasoy G.: Local studies in horizontal gas-liquid slug flow. Nuclear. Eng. Design 184(1998), 305–318.
  • [9] Shemer L.: Hydrodynamic and statistical parameters of slug flow. Int. J. Heat Fluid Flow 24(2003), 334–344.
  • [10] van Hout R., Barnea D., Shemer L.: Translational velocities of elongated bubbles in continuous slug flow. Int. J. Multiphase Flow 28(2002), 1333–1350.
  • [11] dos Reis E.,Goldstein L. Jr.: A non-intrusive probe for bubble profile and velocity measurement in horizontal slug flows. Flow Measurement and Instrumentation 16(2005), 229–239.
  • [12] Lynneworth L.C.: Ultrasonic Flowmeters, Physical Acoustics 14, Academic Press, New York 1980.
  • [13] Banerjee S., Lahey R.T. Jr.: Advances in two-phase flow instruments. Adv. Nuclear Sci. & Tech. 13(1981), 227–414.
  • [14] Chang J.S., Ichikawa Y., Irons G.A., Morala E.C., Wan P.T.: Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid two-phase flow. In Measuring Techniques in Gas Liquid Two-Phase Flows (J.M. Delhaye, G. Cognet, eds.), 319–335, Springer, Berlin 1984.
  • [15] Chang J.S., Ichikawa Y., Irons G.A.: Flow regime characterization and liquid film thickness measurement in horizontal gas-liquid two-phase flow by an ultrasonic method. In Measurements in Polyphase Flow (T.R. Heidrick, B.R. Patel, eds.), 7–12, ASME Press, New York 1982.
  • [16] Matikainen L., Irons G.A., Morala E.C., Chang J.S.: Ultrasonic system for detection of transient liquid-gas interfaces using the pulse-echo technique. Rev. Sci. Instr. 57(1986), 1661–1666.
  • [17] Chang J.S., Morala E.C.: Determination of two-phase interfacial areas by an ultrasonic technique. Nuclear Eng. Design 122(1990), 143–156.
  • [18] Morriss S.L., Hill A.D.: Ultrasonic imaging and velocimetry in two-phase pipe flow. ASME J. Energy Resources Technology 115(1993), 108–116.
  • [19] Faccini J.L.H., Su J., Harvel G.D., Chang J.S.: An Advanced Ultrasonic Technique for Flow and Void Fraction Measurements of Two-Phase Flow. Proc. 12th Int. Conf. Nuclear Eng., Virginia, Arlington 2004.
  • [20] Mandhane J.M., Gregory G.A., Aziz K.: A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiphase Flow 1(1974), 537–553.
  • [21] UTEX Scientific Instruments.Winspect Reference Guide Ver. 6, 1–132, 2004.
  • [22] Wallis G.B.: General correlations for the rise velocity of cylindrical bubbles in vertical tubes. Report 62, GL.130, General Electric Co., 1962.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0006-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.