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Abstract

In this paper one discusses the problem of modelling of thermal barrier coatings in an unified

way. This approach takes into account both mechanics of materials responsible for behavior of

the thermal barrier coatings and its production relying on preparation of material for deposition

and the deposition itself. Two pillars of the unified description are considered. The first one is

the notion of index of structure. The second one is created by criteria of design of properties

of the thermal barrier coatings. It is suggested to apply the multiscale method of modelling for

the behavior of material in deposited layer called collection of dynamical systems with dimen-

sional reduction. This multiscale approach is viewed as appropriate theoretical environment for

expression of design criteria of the layer. We mean by this the criteria related to mechanical re-

sistance against damage and criteria for thermal properties. It is accentuated that the two-scale

segment of multicale modeling composed of molecular dynamics and nanoscale modeling is of

primary importance for the design tasks. Possibility of consideration of both mentioned meth-

ods of modelling follows from properties of the collection of dynamical system approach which

allow us to treat molecular dynamics and continuum mechanics models within one theoretical

scheme. Premises for design of production of thermal barrier coatings process are placed in the

design of layer properties which could be next transformed into design of indexes of structure

corresponding to various stages of the deposition.
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1 Introduction

Thermal barrier coatings (TBC) are produced to protect elements of construc-
tions against damage induced by high temperature. Thermal barrier coatings are
widely applied for protection of turbine blades working at high temperature in
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turbines for propulsion and power generation. The benefit of TBC application in
the last case follows from their ability to sustain a high thermal gradient in the
presence of sufficient backside cooling. It reduces temperature on the surface of
turbine blades composed of superalloy up to approximately 150 ◦C. The coatings
systems applied to turbine blades [26] predominantly consists of partially stabi-
lized zirconia top coat (YSZ), thermally grown oxide (TGO) and a metallic bond
coat deposited on superalloy. However, many other materials are investigated with
respect to their usefulness to construction of TBC [27]. Thermal barrier coatings
are produced usually by a deposition process. The deposition process can be
realized by various methods. Let us mention for instance the physical vapour
deposition or chemical vapour deposition within a general classification. In the
first case the electrospraying method is important and has wide applications [1].
Plasma spraying process [28] or electron beam-physical vapour deposition (EB-
PVD) [29] are predominantly applied for production of TBC imposed on turbine
blades. The deposition process enables us to produce a layer of material deposited
on the previously prepared surface. This region of scientific investigations is dom-
inated by experimentalists which realize in practice various methods of deposition
and various means for controlling it. Theoretical descriptions of various kinds are
also developed, especially in case of modelling the deposition surface [2–6].

Thermal barrier coating is a considerably smaller object than the turbine
blade especially in one dimension. Thus, the problems related to production as
well as operation of such a layer differs from traditional engineering objects. Usu-
ally, we are not prepared to design of such objects. This is so since the level
of design is determined by the level of validity of theory which is applied to de-
scription of the designed object. It means that it would be desirable to improve
theoretical modelling of thermal barrier coatings in order to extend formal engi-
neering activity to the area of design of such fine objects.

We encounter in literature various approaches to modelling the mechanical
properties of thermal barrier coatings. Many papers are devoted to the descrip-
tion of damage of such structures. We are not going to do any review of mechanics
related to TBC. Our aim is reduced to make a conclusion why such descriptions
should be improved and in what direction it should be done. One considers in
literature the cracking of thermal barrier coatings. Elastic and viscoplastic mod-
els are applied for description of deformation of material. Finite element methods
are predominantly applied. Delamination of layers in TBC is also frequently dis-
cussed. Fracture mechanics is applied for functionally graded materials which are
also applied for TBC production. Above discussion gives an image on methods
which are applied for description of mechanical behavior of TBC. All approaches
are directed towards particular aims and use well elaborated methods in mechan-
ics of materials usually applied for considerably larger objects. Scale is taken into
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account by division of layers into small parts by finite elements. However, this
does not lead to modification of constitutive equations which frequently can de-
pend on scale especially for thin structures and in context of varying temperature.
The conclusion is that modelling of processes in TBC layer is rather traditional.
However, by further discussion we estimate that such a modelling can be very
complex. This is the case for modelling of damage which depend on various
mechanisms of inelastic deformation depending on temperature. Therefore, it
seems to be necessary to discuss wider context which would provide premises for
modelling phenomena in objects which are small at least in one dimension.

The design of thermal barrier coatings should take into account ability of such
a structure to protection against the external temperature. However, necessity of
operation of TBC layer in thermal cycles when thermal stresses appear, in envi-
ronment inducing corrosion as well as wearing follows that its resistance against
damage is, as a matter of fact, of primary importance. Consequently, design of
TBC needs appropriate mechanics of materials for its structure.

Structure of TBC layer depends on the way of its production. The process
of production contains both preparation of material for deposition as well as the
method of deposition as such. Thereby, we would like to design the layer with
respect to properties and its behavior during working but such properties depend
just on the structure obtained during the production. It seems that the design
process should be concerned with the way of production as well as properties of
TBC during its operation. Consequently, the theoretical description should unify
both the production process of the layer of material and mechanics of materials
related to description of behavior of TBC. Then, the question is, what kind of
theoretical description is appropriate for realization of the aim discussed above.

First, we see that fundamental notions of the theoretical description should
be associated with preparation of deposited substance and methods of deposition
since such processes are responsible just for the kind of material as well as struc-
ture which will be obtained within the deposited layer. However, this aspect is
not sufficient yet since we have not any aims for preparation of material at this
moment. After the deposition we are in fact within the mechanics of materials
since we are interested in mechanical, thermal, physical or chemical properties of
the obtained layer. Therefore, the second aspect of theoretical description should
give a possibility of expression of properties designed for the layer within me-
chanics of materials. Having at our disposal both mentioned above aspects we
have a chance to design the deposited layer and analyse methods of controlling its
production within a unified theoretical description. In such a case we could also
have a possibility of realization of numerical simulations of processes still before
realization of the deposition in practice.
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Summarizing, the aim of this paper is to present the concepts which could lead
to unification of theoretical description of production and behavior of thermal
barrier coatings. The concept discussed here is based on notion of the index
of structure and multiscale mechanics of materials. The index of structure is
introduced in order to manifest which components of structure are associated with
various stages of the preparation as well as realization of the depositon process.
Multiscale mechanics of materials is the second pillar of description. It provides
theoretical environment for expression of design criteria for the deposited layer.

In this paper one also discusses in a general way problems and physical phe-
nomena which appear especially in ceramic materials constituting TBC layers in
order to elucidate complexity of possible theoretical descriptions.

2 On the notion of index of structure

Index of structure is introduced in order to reflect within constructed theory
the fact that deposited structure depends on the whole process of preparation
of material to spraying, process of spraying and finally the deposition. Let us
consider the situation when we prepare a powder for instance. Then, the structure
can be characterized by variables describing kind of single crystal contained in
subgrains of the powder grain. Thereby, this structure will be present in final
deposition layer. Consequently, we should have at our disposal this fact expressed
within the theory.

We would say that indexes of structure are related to various stages of the
deposition process. However, the term stage can be not sufficiently precise since
the stage is in fact related to the time interval in which it occurs. In the deposi-
tion process some subprocesses can be carried out in parallel or even can change
the order. This is possible since they can happen at various places. Therefore,
we introduce the term segment of the deposition process. Thus, preparation of
powder is a different segment than spraying which in turn is different than the
deposition as such. Within the segments we distinguish processes when indexes
of structure depend on time. We assume that the kind of index of structure is the
same within the given segment. Taking into account above preliminary discussion
we define the index of structure in the following manner:

Definition 2.1 The index of structure related to a segment of deposition pro-
cess is a set of variables which represents characterization of structure of material
which is next transported to the deposition layer.

The term stage can be also applied in what follows. We use them when some
segments have to be realized successively and when the context of such a situation
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is clear. Let us distinguish some segments corresponding to the deposition process.
First the matter should be prepared to spraying. Let it be a powder for instance.
Then, the index of structure is related to the form of structure contained in
the powder. However, the powder can also be transformed still before spraying.
Let us mention nanostructurization for instance [43]. In such a case we would
consider several segments during preparation of powder. We distinguish here one
segment only for simplicity. As a result we can distinguish the index of structure
corresponding to preparation of matter to spraying process. Let it be expressed
in the form

IPREP = {IP1, ...,IPn} , (1)

where IPj stand for various components of index of structure, in particular corre-
sponding to various possible components of powder. We can consider for instance
graded material produced during deposition by spraying various components [33].

Let us discuss possible variables which could be components of the index of
structure. Let us consider for instance an example which contains variables

IPj = {c, g, sh} , (2)

where group of variables c represents kind of crystal structure of particles in the
powder, group of variables g represents size of grains and group of variables sh

reflects shape of grains. We do not discuss variables in more detail at this moment.
Let us mention that variables are related to the scale of averaging applied in
modelling. Let us note that the free energy Ψc related to single crystal grain
can be attractive and perhaps very important variable. It characterizes crystal
structure similarly as c but contains also additional information on material. In
case of c or Ψc we have to do with discrete variables since they follows from a finite
set of possible crystal structures. Variables of type g or sh can be continuous. The
next segment of deposition process is related to spraying. We assign the index of
structure to this process in the following form

IJ = {IJ1, ...,IJn} . (3)

Let us note that components of IJ should coincide with IPREP since spraying does
not transform the matter which is sprayed. However, efflux of sprayed matter can
be divided into parts in case when various components of powder are sprayed.
Then, indexes of structure are also assigned to corresponding parts. It is also
admissible that process of spraying has an effect on the structure of sprayed
material. The next segment corresponds just to the deposition process as such.
Then, the index of structure can be expressed as

IDM = {IS, IM} . (4)
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The component IS stands for the index of structure related to surface of deposited
matter. Let us note that form of the surface depends on methods of deposition and
by this creates new variables related to the structure. Let us mention for instance
local peaks and cavities of the surface which next will be responsible for production
of pores in deposited material. Size of such objects and their geometry can be
considered as new kind of variables considered as the index of structure. The
component IM represents structure of three-dimensional deposited material. In
this case only the pores are the important elements of structure. Consequently its
geometrical characterization can be carried out by means of corresponding index
of structure. Role of scale in modelling the deposition, description of evolution of
surface of deposited material, and methods of defining of index of structure for
deposited material in context of scale, is discussed in [6].

We can also introduce additionally indexes of structure for post-deposition
processes. Let they be expressed by

IMT = {IMT1, ...,IMTp} . (5)

The last step means that we admit various possibilities in changing structure of
deposited layer after the deposition process for its improvement.

Let us comment on the role of index of structure in theoretical description of
the deposition. Let us mention that when we distinguish some indexes of structure
then we are able to observe by theory a path of matter which goes towards the
deposition place. Then, it is arguable which part of matter should be placed
in a given position and which environment for such a particle of matter should
take place.

In case when we use free energy Ψc for prepared particle than we are able
to discuss also additional, mechanical and physical properties of the deposited
matter. All this gives hope that it is possible to design properties of the deposited
layer of material together with its production.

3 Discussion of design criteria of the deposited layer

Let us notice that the index of structure corresponding to deposited material is
responsible for the form of free energy. Indeed, let us consider for instance the
situation where pores are produced in the deposited layer. Then, the density of
pores undoubtedly influences the free energy corresponding to the scale applied
in modelling of larger structures than size of pores. In case when we are able to
control the form of pores then, we control to some degree also the form of free
energy. On the other hand this function is of key importance in modelling of
mechanical behavior of material. Thereby, we can expect that some criteria for
material design can be expressed just by means of free energy.
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Above discussion suggests that in order to realize a technological process of
production of TBA with required properties we should first create some models
of TBC. Such models should have degrees of freedom for a design and should
be based on the form of free energy. First we could propose a criterion for the
behavior of material in the deposited layer. This criterion would be interpreted
as a design. Next taking into account dependence of the free energy on the index
of structure we could look for a technology of deposition. Then, the index of
structure would be useful since we can modify the deposition process changing
just the index of structure.

Let us carry out a general discussion how criteria for design of material layer
could be defined. We concentrate our attention on mechanical properties. Then,
frequently, strength of the layer is an important property. The strength of layer
can be associated with a critical stress for slip in order to accommodate possible
change of shape which could happen in another material layer cooperating with
the first one during a thermal cycle applied to the system. Critical stresses for
crack propagation can also be important. Expression of criteria for material layer
design is not simple and immediate in general. This is so since we should first
discuss which scale of averaging is appropriate for expression of the criteria. We
can have to do with atomic scale. Indeed, during preparation of powder and mak-
ing various possible dopants we influence arrangement of atoms. In case when we
control very precisely atomic arrangement we could be also interested in criteria
expressed at atomic level of description. Then, molecular dynamics simulations
could have dominant role in expression of mechanical behavior including thermal
properties. Usually the deposion process is not so precise. Then, nanoscale level
of description can be useful.

Let us discuss possible form of design criteria corresponding to nanoscale.
Layer produced by spraying cooperates with material on which this one is de-
posited. Frequently both materials undergo some thermal cycles. As a result
thermal stresses following from various properties of materials can destroy the
deposited layer. When we would like to improve this situation we can expect
that both materials can be chosen in order to have the same thermal strains or
similar ones when they are considered separately. If it would not be possible then
in order to avoid fracture of the deposited layer we would like to have property
expressed by possibility of stress relaxation in the layer by slips or other forms
of inelastic deformation in material. Summarizing we see that critical values of
stresses for slip initiation or crack propagation can play very important role in
the design of deposited layer. In nanoscale model of plasticity [7, 9] we assume
that slip is initiated when stress considered in a slip system attains a critical value
expressed by

τ = τ∗ . (6)
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Similarly, the crack propagates within the nanoscale model of fracture [8,9] when
critical stress in a fracture system

σ = σ∗ . (7)

attains a corresponding critical value.
Structure of slip is defined by slip systems {mi, ni}, where mi indicates

direction of slip and ni is perpendicular to the surface of slip. Slip surfaces are
considered as discontinuity surfaces for displacements where deformation by slip
is continued. Thus, beyond the slip surfaces the material is nonlinearly elastic.
Let us note that slip systems as well as fracture systems are expressed within the
nanoscale model by means of free energy [7, 9].

Let us distinguish also the stress σ∂ in a vicinity of boundary of the deposited
layer where the contact with another material is realized. Within this symbolic
notation we can interpret σ∂ also as a surface force associated with the contact be-
tween layers. Thus, σ∂ is interpreted here as one symbol for various mathematical
objects for simplicity.

We can discuss design of the deposited layer corresponding to nanoscale mod-
elling within the set of conditions

|σ∂ | → min , (8)

τ∗ ∈ [τa, τb] (9)

or

τ∗ → max , (10)

τ∗(Ψ) <GB σ∗(Ψ) , (11)

σ∗ → max , (12)

{mi, ni}(Ψ) = Φ , (13)

where Φ is a given function. The condition (8) leads to decreasing of stresses in the
region where contact between various materials takes place. The condition (9) can
be useful for design of possibility of stress relaxation in case when various material
layers interact. This perhaps should be considered together with Eq. (11), where
the relation <GB means that τ

∗(Ψ) goes before σ∗(Ψ). We have accentuated here
dependence of both stresses on the form of free energy Ψ since slip systems and
fracture systems are defined just in terms of this function. The condition (11) can
be interpreted as a criterion for ductility. Thus by Eq. (11) we express tendency
to preferring first slip before crack.

Sometimes we could be interested directly in property (10) together with the
condition (12). Having at our disposal slip systems expressed by means of the
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free energy we could influence also the structure of slips by option of appropriate
dopants and changing in such way the IPREP . It affects the form of Ψ. Then, the
given function Φ in the condition (13) expresses our expectations on the kind of
admissible slip systems in connection with the index of structure. Let us note that
in nanoscale models we use free energy for defining all critical conditions. Then,
such conditions are expressed by critical strains directly but intermediately only
by critical stresses. In above discussion we use stresses for making interpretation
of our intentions more clear.

Modelling at a larger scale of averaging leads to another description. Let
us mention the crystal plasticity [11, 12], which is designed to modelling plastic
phenomena in a single crystal with scale of averaging related to micrometers.
Then, slip systems are also distinguished. Plastic deformation is described by the
strain tensor. However, slip bands can be modelled as motion associated with the
discontinuity surface. The design criteria can be associated with critical value of
stresses expressed in slip systems in similar manner as this was considered above
for nanoscale models by

τ∗ ∈ [τa, τb] . (14)

Furthermore, we can be interested how small cracks develop when the slip is
continued. We can expect that slip within slip bands is not perfect. It means that
some instabilities in flow lead to breaking of interatomic bonds on slip surfaces.
Then, evolution of cracks within slip bands is much more probable than in other
regions of material. In order to describe evolution of such cracks we can introduce
some internal state variables. Let us consider for instance the variable

ξCR =
SCR

SSL
, (15)

where SCR is a surface measure of cracks referred to measure SSL of amount of
whole slip surfaces contained in the slip band. Then, evolution of this variable
can be described by means of the evolution equation

ξ̇CR = ACR(h) , (16)

where h represents all variables applied within this model.

We are interested to possible degree on slowing down of development of cracks
in the slip band. Consequently, we can postulate a criterion

|
∂ACR

∂h
| → min , (17)

where we consider the length of vector of derivative of the function ACR as a mea-
sure of velocity of changes which we would like to decrease.
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Let us note that we have to do with an open problem how precisely the
evolution equation (16) should be determined. However, its form depends on
structure of deposited material and by this on the index of structure. Hitherto
we have discussed descriptions in a single crystal. However, a part of index of
structure describes porous structure and other features which are created by the
deposition process. Thereby, we should discuss also more averaged descriptions
related to scale of averaging larger than size of pores.

We have to do with several possibilities. Perhaps structure produced by depo-
sition enables us discriminating some slip systems with the aid of the free energy
in a similar manner as this is done for nanoscale level of description but in case of
more averaged medium. Then, we can consider similar criteria for material design
as those discussed by means of Eqs. (16) and (17).

If the averaged medium is more homogeneous we can apply plasticity related
to still larger scale of averaging. It is preferable to apply approaches using free
energy and internal state variables as this is done in [13,14] for instance. Option
of such an approach is motivated by relations between the free energy and index of
structure and following from this fact unified theoretical description of deposition
process and mechanical properties of the layer.

Above discussion is devoted to accentuating role of methods of modelling in
determination of possible criteria for design of deposition layers. It seems that
multiscale aspect of modelling is of great importance. This is so when we would
like to describe particular mechanisms of inelastic deformation which in turn can
be of key importance for correct working of thermal barrier coatings.

4 Structural and physical properties of pure zirconia

and partially stabilized zirconia

We have discussed above some general aspects associated with mathematical de-
scription and design of deposited layers. By this discussion we tend to develop
gradually views on method of modelling of deposition process and deposited lay-
ers. Furthermore, doing this we try to promote particular category of deposited
layer, namely we would like to accentuate validity of thermal barrier coatings. Va-
lidity is related to their technical applications. Furthermore, complex phenomena
in thermal barrier coatings provide also motivations for development of multiscale
machanics of materials us such. Consequently, by above discussion we would like
to obtain also some justification why multiscale and especially nanoscale mechan-
ics of materials should be developed in the context of thermal barrier coatings
production and modelling.

In order to indicate such reasons we discuss processes in zirconia which is
an important material for building just thermal barrier coatings. Complexity of
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phenomena in zirconia and zirconia based mixtures as well as multiphase com-
posites shows that simple and very averaging approach by traditional continuum
mechanics approach perhaps is not sufficient. The question which approach would
be appropriate for such material, especially placed in layers, leads to some conclu-
sions developed in the next part of this paper. Zirconia (ZrO2) crystal structure
changes with temperature. At atmospheric pressure it transforms from cubic crys-
tal lattice into tetragonal one for 2200 ◦C. Next with decreasing of temperature
it can be transformed into monoclinic crystal structure for 1150 ◦C [15].

Figure 1. Change of distribution of atoms in ZrO2 during tetragonal to monoclinic transforma-

tion.

In the last case we have to do with martensitic transformation. Changes in dis-
tribution of atoms during the transformation t→ m are shown in Fig. 1. Possible
orientations of monoclinic structure with respect to tetragonal one are shown in
Fig. 2 following from [16]. In Figs. 3 and 4 we show how various variants of
martensite of zirconia accommodate within parent phase and create by this mi-
crostructure. Above illustrations allow us to imagine complexity of martensitic
transformation. Various orientations are associated with various placements of
habit planes in parent phase. This induces various kinds of rotations of separate
martensite variants.

Transformation of pure zirconia from tetragonal to monoclinic phase induce
large volume changes which can induce fracture. As a result of this the material
is not too convenient for applications. However, the addition of oxides such as
CaO, MgO or Y2O5 reduce the m-phase and stabilize tetragonal phase (partial
stabilization) at the same temperature. Such material is frequently called the
partially stabilized zirconia (PSZ). With increasing of amount of dopants we can
stabilize also the cubic phase (full stabilization) [17].
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Figure 2. Various orientations of monoclinic structure with respect to tetragonal one in ZrO2.
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Figure 3. Selfaccomodating martensite variants in ZrO2.

Figure 4. An example of martensitic structure in ZrO2.
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Interesting mechanical properties appear when the grains in tetragonal phase
are metastable [18]. Such a situation happens when grains containing low con-
centration of yttria are placed within matrix with high concentration of yttria.
Then, stress induced martensitic transformation is possible. This phenomenon is
associated with transformation strenghtening [19].

Possibility of transformation of stabilized metatstable tetragonal phase grains
placed in cubic phase by stress makes more difficult propagation of crack. Indeed,
when plastic zone near the tip of the crack is created then, large stresses produced
there can transform the tetragonal phase into monoclinic one. This changes dis-
tribution of stresses in vicinity of the tip of the crack. When structure and dis-
tribution of grains is appropriate than the change of stresses makes propagation
of the crack impossible. It means that larger external stress has to be applied in
order to activate fracture. As a result strenghtening of material increases what
makes this form of zirconia more applicable. Above discussed property can be
attained at low temperatures. Such a situation is shown in Fig. 5 [19]. Let us
mention that doped with yttria fine grained zirconia polycrystal have also in-
teresting mechanical properties for larger temperatures. It exhibits structural
superplasticity [18,20,21]. This effect can be useful in applications in many tech-
nological processes. Let us note however, that inclination to superplasticity can
also be convenient in relaxation of stresses when the material cooperates with
another one in a kind of composite for instance.

Above concise discussion shows that inelastic deformation of partially sta-
bilized zirconia has various mechanisms. First, the martensitic transformation
appears as transformation from tetragonal to monoclinic crystal structure. Fur-
thermore, we can admit also slips as mechanism of inelastic deformation in some
temperature range and applied external stresses [22, 23]. In case when PSZ is
considered as a kind of composite, considering grains of tetragonal phase within
cubic phase then the stress induced transformation in grains can be considered.
When, we apply such a situation to crack tip zone then processes are rather com-
plicated. Inclination to superplasticity can also be important in some temperature
range. Let us mention that we have an intention to apply this material in ther-
mal barrier coatings where cycles of temperature are rather frequent. Then, the
mechanisms of deformation associated with processes near to boundary of grains
can be important.

Creation of microstructure related to martensite, especially in thin layers,
needs carefull modelling. It seems that nonoscale models of martensitic trans-
formation are appropriate to this end. Such models have been constructed for
copper based alloys in [9, 24]. Possible cooperation of slip plasticity and marten-
sitic transformation at nanoscale level of description has been discussed in [9,25].
This approach could also be developed towards application in ceramics. Nanoscale
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models are convenient to cooperation with molecular dynamics methods. In above
discussion we see that temperature has important influence on quality of processes
and change of mechanisms of inelastic deformation. In general it seems that appli-
cation of molecular dynamics is inevitable in order to support nanoscale models
and explain finer processes. Therefore, above discussion supports the point of
view that mechanical models applied in modelling of complex processes in small
scale, such as those ones in PSZ for instance, should be realized on the way which
gives a chance in a perspective, for cooperation of introduced models just with
the molecular dynamics method.

5 Thermal barrier coatings

Thermal barrier coatings (TBC) are produced in order to protect chosen parts
of constructions against high temperature. Usually they have multilayer struc-
ture and lower temperature on protected surface in case of additional cooling of
this surface.

Thermal coating systems can be applied to turbine blades [26]. Usually they
consist of partially stabilized zirconia top coat (YSZ), thermally grown oxide
(TGO) and a metallic bond coat deposited on surface of turbine blade composed
of superalloy. Many other materials are also investigated with respect to their
potential application to construction of TBC [27]. TBC applied to turbine blades
allow us to reduce temperature on the surface of superalloy up to approximately
150 ◦C. In the last case thermal barrier coatings are produced usually by deposi-
tion process with the aid of plasma spraying process [28] or electron beam-physical
vapour deposition (EB-PVD) [29].

Thermal properties of TBC are mainly represented by a layer of Y-PSZ which
has convenient thermal strains and is able to reduce stresses, in case of presence
of various layers, induced during thermal cycles. However, the PSZ is transparent
to oxygen, As a result thermally grown oxide (TGO) is produced between top
coat built of partially stabilized zirconia and bond coat. TGO is composed of
Al2O3. The bond coat is the reservoir of Al for production of TGO. As a result
TGO increases and its structure changes during working. Thermal strains in TGO
layer are not well fitting to other layers of the thermal barrier. Therefore stresses
generated by the growing layer lead with time to damage of the thermal barrier.

Various challenges are associated to the design of TBC. We can try to control
TGO. This is however difficult. Therefore we can try to reduce influx of oxygen
into the region of bond coat by application of various methods of surface modifi-
cation. Let us mention high-intensity pulsed ion beam (HIPIB) [30] or laser treat-
ment of surface of TBC [31,32]. Above methods lead to melting of surface of ther-
mal barrier coatings and by this introduce modification of its structure. As a result
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influx of oxygen into bond coat within TBC can be reduced. Improving of TBC
properties against oxidation can also be attained by production of graded coat-
ings. Graded transition of concentration from Al2O3 to YPSZ leads to obtaining
good thermal insulation of stabilized zirconia with low oxygen diffusivity [33,34].

Figure 5. Propagation of crack in matrix with tetragonal, metastable grains of YPSZ.

Graded materials can also reduce thermal stresses owing to gradual transition be-
tween layers of various properties. Graded thermal barrier coatings can be more
resistant to damage than non graded ones [35]. Thermal properties of TBC can
be modified by decreasing thermal conductivity within the layer structure or by
improving reflexivity of thermal radiation. This can be attained by adding some
dopants into the layer [36] or by controlling of structure of pores, eg by producing
zig-zag pore microstructure [37]. Widely applied method of improving thermal
insulation for TBC is creating its multilayer structure [36, 38].

Summarizing, we see from the above discussion that thermal barrier coating
are rather complex objects in small scale and have various functions assigned to
various elements of this structure. In particular important properties are associ-
ated with thermal properties. However, good thermal properties are not sufficient
for correct work of TBC since the layers have to be stable in conditions frequently
extremal with respect to stresses. Thus, both thermal properties and mechanical
properties have to be the aim in design of thermal barrier coatings.

The deposition process complicates additionally the structure of thermal bar-
rier coatings. We obtain usually a porous structure during the deposition. Fur-
thermore, we produce frequently nonhomogeneous distribution of components in-
tentionally. Let us mention the graded coatings for instance. On the other hand
we have discussed previously phenomena in zirconia and partially stabilized zir-
conia which are estimated as complex. Therefore, an additional complication
of structure by introduction of pores or composite character of the layer makes
modelling of thermal barrier coatings still more complicated.
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6 Remarks on multiscale modelling in mechanics of ma-

terials

6.1 General framework

Previous discussion shows that thermal barrier coatings are structures in which
complex phenomena in material can happen. Furthermore they are burdened
with responsibility for fulfilling various functions ensuring resistance and safety
of coated construction. Mechanisms governing behaviour of such layers are fre-
quently related to very small scale or even need analysis associated with atomistic
scale. Thereby, in order to take into account whole phenomena in TBC and to
have the possibility of expression of design criteria we should consider a mathe-
matical description for mechanics of materials related to various scales.

Small scale behavior of materials leads to increasing role of dynamics of pro-
cesses in comparison with larger scale models. In particular, the most complex
dynamics is related to atomistic scale where we usually apply molecular dynamics
methods. All this suggests that methods of modelling should take into account for-
malization of the scale of averaging of processes and a dynamical system approach.
Such kind of modelling has been introduced and discussed in papers [9,10,42] and
is called the collection of dynamical systems with dimensional reduction. We
discuss here concisely just this method of modelling.

Our discussion is related first to two-scale modelling in an abstract form. We
consider the most elementary model as a foundation for determining by means
of it a more averaged and simpler model. Consequently, we introduce a dynam-
ical system aimed at description of phenomena on the most elementary level.
Such a system called further the elementary dynamical system (EDS) is given in
a general form

ϕ̇ = L(ϕ, f) , (18)

where ϕ∈ Mϕ is the variable of this system,Mϕ is a space of admissible values
of this variable, f ∈ F represents external interactions acting on this system and
F stands for space of admissible values of f .

External interactions are not always expressed in relative simple form given
by f . They can also appear as interactions with other dynamical systems. There-
fore, we introduce also an extended dynamical system

ϕ̇
r = L(ϕr, f r) , (19)

where ϕ
r ={ϕ, ϕ

e}∈Mϕr and f r = {f , f e} ∈ Fr. In other words the dynamical
system (18) is a part of that one defined by (19) and can be viewed as a particular
case of (19). As a result an external dynamical system with variable ϕ

e can be
additionally distinguished, as a source of external interactions acting on EDS.
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This gives a possibility of discussing larger class of interactions of (18) with an
external world.

The dynamical system Eq. (18) describes more elementary processes and its
form is, by assumption, the most complex. We tend towards simplifications of
this system. To this end we introduce a partition of Eq. (18) into a collection
of P dynamical systems. This is carried out by partition of variable ϕ ={ϕh},
h ∈ IP = {1, 2, ..., P}.

In order to use this partition for further simplifications we introduce also
additional notations, sets and mappings. Let

∏

hMh be Cartesian product of sets
Mh, whereMh stands for the set of admissible values of {ϕh}. Let us introduce
MΠ ⊂

∏

hMh as a subset of the Cartesian product. Then, MΠ consists of
ϕ ={ϕh} which are possible solutions of Eq. (18). We consider also a projection
πh : MΠ →Mh in the Cartesian product.

Let us distinguish also a collection of dynamical systems for the extended
system and a set of indexes IR related to them. Then, IR = IP ∪ IE, IP ∩ IE = ∅,
where IP is related to (18) and IE = IR − IP is connected with the external
system. Furthermore we distinguish a group of dynamical subsystems IG ⊂ IP
by selection of corresponding indexes. Then, IO = IR − IG represents indexes
defining external with respect to IG dynamical subsystems within (19).

New simplified equations have to be based on balance of mass and energy
equations as the most fundamental physical laws for mechanics of materials. In
order to create such equations for the collection of dynamical systems we should
have at our disposal a set of additional notions making possible to formulate them.
Therefore we introduce the following assumptions which represent general prop-
erties of the collection of dynamical systems distinguished within the elementary
dynamical system:

1. Subsystems are distinguished by determination of groups of variables ϕh =
{ϕhα}, where α ∈ IAh, IAh is a finite set related to separate h-th subsystem
and h ∈ IP .

2. There exists a function m̄h(ϕh) = {mh1, ...,mhβh
} which assigns a set of

masses for h-th subsystem. The total mass of the system is mh =
∑

imhi.
We have also that

∑

h βh = N , where N is the total number of masses.
Then, the functions m̃ : MΠ → RP with property πh ◦ m̃({ϕh})= mh and
m : MΠ → R, m({ϕh}) =

∑

mh determine the total mass related to each
subsystem and the total mass related to (18) respectively.

3. There exists a function Ẽ : MΠ → RP , πh ◦ Ẽ({ϕh}) = Eh which assigns
a value of energy to each of subsystems and E : MΠ → R, E({ϕh}) =
∑

hEh determines the total energy related to (18).
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4. There exists a family of mappings Jij : MΠ → R, i, j ∈ IP , Jij({ϕh}) = Jij

called flux of mass from j-th subsystem to i-th subsystem and Jij +Jji = 0,
Jii = 0.

5. There exists a family of mappings Wij : MΠ → R, i, j ∈ IP , Wij({ϕh}) =
Wij called the flux of energy from j-th subsystem to i-th subsystem and
Wij +Wji = 0, Wii = 0.

6. Source of mass is determined by the function c : MΠ → RP , c({ϕh}) = {ci}.
Then, ci = πi ◦ c({ϕh}) can be considered for each subsystem of the whole
system and stands for the source of mass in i-th subsystem.

7. Source of energy is determined by the function R : MΠ → RP , R({ϕh}) =
{Ri}. Then, Ri = πi ◦R({ϕh}) can be considered for each subsystem of the
whole system and stands for the source of energy in i-th subsystem.

8. Geometrical objects can be assigned to each subsystem. This is carried
out with the help of mappings Gx : MΠ → EP

e , GL : MΠ → (2Ee)P ,
GS :MΠ → (2Ee)P , GV :MΠ → (2Ee)P , where Ee is the Euclidean space.
The map Gx assigns some distinguished points to subsystems, GL intro-
duces one-dimensional, GS two-dimensional, GV three-dimensional geomet-
rical objects considered as subsets of Ee and accompanied by distinguished
subsystems.

9. Position vectors q = {qh1, ...,qhβh
: h ∈ IP } can be introduced by means of

mapping Pq. Q = {{qh1, ...,qhβh
}}, dimQ <∞, Pq : Mϕ → Q, Pq(ϕ) = q.

All discussed assumptions and functions can also be introduced for the ex-
tended dynamical system (19).

Above assumptions enable us to discuss various notions associated with possible
simplifications related to elementary dynamical system. In particular geometrical
object can create relation between EDS and space in which the dynamical system
acts. They can assign a volume of space occupied by a dynamical subsystem for
instance. This can lead to various approximations with ths help of geometry and
introducing continuum for instance.

With the help of above assumptions we are able to carry out analysis of in-
terchange of mass between subsystems as well as to consider possible sources of
mass which appear within subsystems. Let us consider an arbitrary part of EDS
defined by IG ⊂ IP . Let IO define the external with respect to IG dynamical sys-
tem. Then, we are able also to express the balance of mass equation for collection
of dynamical systems in the following form
∑

i∈IG

(ṁi−ci)+
∑

i,j∈IG

Jij +
∑

i∈IG,j∈IO

(Jij +Jji)+
∑

i,j∈IO

Jij +
∑

i∈IO

(ṁi−ci) = 0 . (20)
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Sum of masses interchanged between subsystems within IG without any inter-
change with an external subsystems is equal to zero. Thus, we have

∑

i,j∈IG

Jij =0.

As a result we can express the balance of mass equation connected with the group
of subsystems represented by IG with the help of formula

∑

i∈IG

(ṁi − ci +
∑

j∈IO

Jij) = 0 . (21)

In equation (21) the terms Jij describing interchange of mass with external system
IO appear. Then, the equation (21) is not entirely determined. Therefore we
should introduce an additional condition

Jij = J̄ij , j ∈ IO . (22)

The external efflux J̄ij should be postulated by a kind of constitutive equations
or can be defined by evolution of the dynamical system defined by means of IO.

The balance of energy equation has a similar structure as the balance of mass
equation and is given by

∑

i∈IG

(Ėi −Ri) +
∑

i∈IG,j∈IO

(Wij +Wji) +
∑

i∈IO

(Ėi −Ri) = 0 . (23)

The balance of energy equation for group of subsystems IG interacting with groups
of subsystems IO, is given by

∑

i∈IG

(Ėi −Ri +
∑

j∈IO

Wij) = 0 (24)

with additional conditions

Wij = W̄ij , j ∈ IO . (25)

Equations (21), (22) and (24), (25) represent a general form of balance of mass and
energy equations related to arbitrary distinguished group of subsystems within the
collection of dynamical systems and can be premises for further considerations.

6.2 Dimensional reduction procedure

Dimensional reduction procedure is introduced in order to carry out transition
from elementary dynamical system to the more simple one which describes chosen
properties of EDS in an averaged manner. Thereby, the simpler dynamical system
represents the more averaged level of description in comparison to EDS.

In the first step of the dimensional reduction we select new variables appro-
priate for description after averaging. Let d = {dh}, h ∈ IR be a set of new
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variables which allows us to describe, approximately, physical states represented
by miscellaneous ϕ

r considered as solutions of an extended elementary dynamical
system. Let M̄ stands for space of admissible values of d. The variable dh is
designed to describe behaviour of h-th subsystem in a simplified form. The index
h is related to previously discussed division of elementary dynamical system into
subsystems. Thereby, the division represented by set IR is related to both EDS
and an averaged dynamical system obtained after application the dimensional re-
duction procedure. By assumption we have that dimM̄ is considerably smaller
than dimMϕ owing to applied averaging.

Let VT = {ϕ(t) : t ∈ T}, VTr = {ϕr(t) : t ∈ T} and V̄T = {d(t) : t ∈ T}.
Introduced spaces represent processes described by EDS an extended EDS and
averaged dynamical system. The first element of the dimensional reduction pro-
cedure is based on introduction of a mapping πT : VTr → V̄T which assigns
dimensionally reduced process d(t) to ϕ

r(t) on the time interval T . We introduce
also FT = {f(t), t ∈ T} and F̄T = {f̄(t), t ∈ T} with mapping πfT : FT → F̄T

which transform force processes between elementary and reduced system. We can
discriminate parts dp(t) and de(t) related to EDS and external dynamical system
within the process d(t). Similar partition is possible for f(t) and f̄(t) since they
are considered here for extended system. Thus, we carry out the dimensional re-
duction for the extended dynamical system (19). However, our interest is related
mainly to EDS given by (18).

Let us introduce an operator L : L̃(ϕ, ϕ̇) where L̃ is obtained from equivalent
to (19) equation in the form L̃(ϕ, ϕ̇) = f r. By this we assume also that such
a reformulation is possible. Then, the operator acting on processes LT : VTr → F̄T

is induced directly by means of L for each t ∈ T . Let us consider a diagram

VTr
-

LT FT

? ?

V̄T
-

L̄T F̄T

πT πfT

(26)

Consequently, the initially introduced equation LT (ϕ(t)) = f(t) at the EDS level
induces, owing to introduced mappings πT and πfT , a dimensionally reduced
equation

L̄T (d(t)) = f̄ , (27)

where L̄T = πfT ◦LT ◦π
−1
T . The operator L̄T can be determined with the help of

solutions of equation (19) and postulated mappings πT , πfT for each value of d(t)
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obtained with the aid of mapping πT . However, structure of the operator L̄T is
not discussed yet since too small number of assumptions is done at this moment.

Let us discuss a similar diagram for a group of subsystems IG ⊂ IP . Then, we
carry out the following decomposition VTr = VTG×VTO = {ϕ(t) = {ϕg(t), ϕl(t)},
g ∈ IG, l ∈ IO}. We introduce also decomposition FT = FTG × FTO in a sim-
ilar way. Above decompositions of domain and range leads to expression of the
form of operator LT by LT = LT (ϕl)({ϕg(t)}) × LT (ϕg)({ϕl(t)}). The operator
LT (ϕl) : VTG → FTG depends on ϕl. Usually, not all ϕl ∈ VTO are necessary for
determination LT (ϕl).

Let IGO stands for a set of indexes which indicate variables necessary for
determination of the operator LTG := LT (ϕl). Then, the operator LT can be
expressed in a simplified form as LTG × TC , where TC = TC(ϕg, ϕc), c ∈ IGO .
With the help of TC we are able to introduce additional equations necessary for
determination of ϕc defining form of LTG within LT . The space VTr is reduced
to VTG × VTC in this case.

The diagram (26) with application of decompositions discussed above can be
expressed now in the following form

VTG × VTC
-

LTG × TC FTG ×FTC

? ? ?

V̄TG × V̄TC
-

L̄TG × T̄C F̄TG × F̄TC .

πT πfT πfTC

(28)

Accordingly, the dimensionally reduced equation describing evolution of a group
of subsystems is given by

L̄TG(dc)({dg(t)}) = {f̄g} , (29)

T̄Cc(dg(t), dc(t)) = Bc . (30)

Decomposition of the operator LT is carried out in order to accentuate separately
the behavior of EDS and the reduced EDS as associated with part representing
external interactions. In case of continuum mechanics, for instance, such a de-
composition can be associated also with boundary conditions.

Diagram (28) allows us to solve Eqs. (29) and (30) by means of solutions of
Eq. (19) and postulated form of πT , πfT , πfTC . However, we would like to have
a precise structure of L̄TG and T̄C in order to have at our disposal dimension-
ally reduced equations possible for solving, without using Eq. (19) incessantly.
Obtaining of such equations is possible by means of postulating of the skeletal
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dynamical system SDS(C) which depends on the family of constants C. The
role of SDS is to represent a larger class of systems which encompass approxi-
mately Eqs. (29), (30). Accordingly, the general form of SDS taking into account
Eqs. (29), (30), can be expressed as

{L̄TG, T̄C}(C)(dg, dc) = {f̄ , B} . (31)

Then, with the help of the identification method, we determine C = C̄ and, as
a result, a reduced dynamical system RDS = SDS(C̄). Finally, RDS represents
an approximation of Eqs. (29) and (30).

Previous discussion of balance of mass and energy equations in relation to the
elementary dynamical system divided into subsystems and above decomposition
of operators into qualitatively various parts provides premisses for determination
of the form of SDS. Let us mention that since balance of mass should be satis-
fied, we obtain that masses related to dynamical system also undergo dimensional
reduction. This is introduced by additional mapping πM ({mhi}) = {Mhp}. Con-
sequently, Mhp are inertia coefficients related to h-th subsystem and should be
present in the postulated form of SDS.

Efficiency of dimensional reduction procedure with respect to quality of ap-
proximation depends among others just on assumed form of the skeletal dynamical
system. We can postulate its form arbitrarily admitting possible inconsistencies
in approximation of EDS. We can proceed in a more advanced form taking
into account discussed above premises. There is imaginable also a mathemati-
cal derivation of the form of SDS following from mathematical structure of the
elementary dynamical system.

Let us discuss a concept of identification of constants which are present in
SDS(C) in order to obtain RDS. Let C = {ψ(t) : ψ ∈ M̄, t ∈ T} be a space
of continuous time processes in M̄ with a metric ρ : C ×C → R+ ∪ {0}. We can
construct two kinds of processes. The first one is based on solution ϕ(ϕ0, f)(t) of
equation (19) and has the form πT (ϕ(ϕ0, f)(t)). The second one is created by the
skeletal dynamical system with assumed constants C. Thus, we have a solution of
equations of SDS as d(C, π(ϕ0), f̄))(t), where f̄(t) = πfT (f(t)). Let us consider
the function

h(ϕ0, f) = inf
C∈CE

ρ(d(C, π(ϕ0), f̄)(t), πT (ϕ(ϕ0, f)(t))) , (32)

where CE is an admissible set of constants.
Let C∗ stands for constants for which the function h attains a minimum.

Then, a satisfactory approximation should have the property that C∗ exhibits
a weak dependence on ϕ0 and f . This, in turn, is connected with assumed form
of functions πT and SDS which reflects the correctness of averaged modelling.
Taking into account the discussed above degree of freedom in approximation we
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can obtain a set of C∗. Finally, we have to choose a constant C̄ from the set of
C∗ by an averaging method. Then,

C̄ = Av{C∗} (33)

where Av means the averaging operation. Obtained constants C̄ determine a di-
mensionally reduced dynamical system RDS(C̄). By means of Eqs. (32), (33) an
approximation and identification procedure denoted further in general as app is
established.

We can discuss also another kind of approximation procedure. Let us assume
that there is a relation Rapp between variables and forces of SDS and constants
cEDS considered in the elementary dynamical system. Let us consider a system
of equations

{L̄TG, T̄C}(C, dg, dc) = {f̄ , B} , (34)

Rapp(dg, dc, f̄ , Bc, cEDS) = 0 . (35)

We assume that the equation (34) and the relation Rapp create together such
a system of equations which enables us to determine C̄ = C(cEDS). In such a case
the reduced dynamical system is also determined. This kind of determination of
constants is closer to this one applied in micromechanics for instance [40].

Summing up these considerations let us notice that the following general pro-
cedure is established

{EDS, DR} → RDS(C̄) . (36)

It means that the dimensional reduction procedure

DR = {πT , πfT , SDS, app} (37)

acting on elementary dynamical system (19) leads to obtaining the reduced dy-
namical system RDS. Consequently, RDS is considered as describing approxi-
mately, evolution of our initially introduced physical system.

We tend towards creating the situation when widely applied continuum me-
chanics approach to modelling various physical systems could cooperate with dis-
crete methods. We would like to have at our disposal also the possibility when
various scale continuum models could cooperate within the multiscale system.
Thereby, we should show how continuum mechanics emerges from collection of
dynamical system approach. Formalization of scale of averaging is also important
in this case.

6.3 Remarks on placement of continuum mechanics within col-

lection of dynamical systems

Continuum mechanics is widely applied in mechanics of materials. Such a theory
is applied even for very small scale models. Let us mention here the nanoscale
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models of plasticity [7] or martensitic transformation [24]. However, with decreas-
ing of scale many effects which are usually discontinuous are revealed. Then, we
introduce within the continuum mechanics various additional notions for taking
them into account. Let us mention the discontinuity surface considered in a small
scale model as slip plane or various kinds of interfaces for phase transition models.
Additionally, some effects related to smaller scale can be averaged and then rep-
resented by various internal state variables [9,14] in a larger scale. Let us mention
here such phenomena as small defects, cracks or dislocations.

Nanoscale continuum models are rather complex in comparison with larger
scale continuum models. This is manifested by the presence of larger number of
constants which should be determined in order to determine entirely the model
with a smaller scale. On the other hand it is difficult to carry out experiments
related precisely to separate small scale phenomena in materials in order to de-
termine mentioned constants. Therefore, a possible way for identification of con-
stants is cooperation of molecular dynamics and nanoscale models within a two-
scale model just in order to solve this problem.

The last demand needs adjustment of formulation of continuum mechanics
for realization of the dimensional reduction procedure. Let us note that fields
on continuum create infinite-dimensional spaces. On the other hand, models of
molecular dynamics are finite dimensional. This is formal difficulty in viewing
continuum models which are physically simpler, as more averaged and obtained
by means of the dimensional reduction procedure from the molecular dynam-
ics. Therefore, classical formulation of axioms of continuum mechanics should be
modified into the case when fields on continuum would be finite dimensional.

Method of introducing finite dimensional fields consists in assumption on va-
lidity of balance equations not for all subbodies of the body B as in classical
formulation of continuum mechanics [39], but only for their determined finite
family K. It is in fact a generalization of the classical formulation since all sub-
bodies create a particular case of K.

We try to introduce continuum in relation to an elementary dynamical system
(18). In order to do it we introduce the mapping GK associated with the division
of EDS into collection of dynamical systems. Consequently, the mapping GK in-
troduces three-dimensional disjoint subsets of the Euclidean space Ee which will
be further interpreted as partition of the body B to the set of subbodies Kh and
⋃

Kh. Thereby GK({ϕh}(t)) = {Kh}(t) describes evolution of B(t) =
⋃

hKh(t)
in time. Kh(t) will be also denoted by χt(Kh) in what follows.

Definition 6.1 The body associated with the dynamical system ϕ̇ = L(ϕ, f)
is defined with the help of mapping GK as Bϕ =

⋃

h∈IP
Kh.
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Let V̄D = {{χ̄, a} : {χ̄, a} = {χh, ah}, h ∈ IP }, where ah is a function
determined on the set {χj} and designed to take into account relations of value
of the deformation function assigned to h-th subsystem with other neighboring
subsystems.

Let us define the space Vκ of deformation functions χκ of the body B with
respect to a given configuration κ as Vκ = {χκ : χκ = λ ◦ κ−1, λ, κ ∈ C}, where
C is the placement of the body in Euclidean space Ee in a similar way as this is
done in classical formulation of continuum mechanics [14,39,41]. Let furthermore,
αχ : V̄D → Vκ be a function and χ

K
κ = αχ({χh, ah}), χ

K
κ (Xh) = χh.

Definition 6.2 The deformation function associated with the distinguished
family of subbodies K is a function χKκ of the form χKκ = αχ({χh, ah}).

Definition 6.3 The motion of the body B associated with the family of sets K
is a continuous map χt : [0, T ]→ {χKκ }.

With the help of above definitions we have obtained deformation function and
motion of the body in connection with the elementary dynamical system. We
also introduce a function T̄ on K, which represents temperature, as T̄ : K → RP ,
T̄ ({Kh}) = {Th}. However, temperature has not as clear geometrical interpreta-
tion as the deformation function. We have discussed relation of the deformation
function to the elementary dynamical system. Therefore, we should also discuss
concisely the relation of temperature to elementary dynamical system within this
approach. Considerable number of physical systems can be characterized by vari-
ables of two types. The first one is related to slowly varying and the second one to
quickly varying processes. The most known example is a system with deformation
and atomic oscillations represented in an averaged way by temperature.

Motivated by this let us introduce a special case of mapping πT = {πST , πQT }
in which two parts related to slowly and quickly varying variables are discrim-
inated. As a result d(t) = πT (ϕ(t)) can be expressed as d = {dS , dQ} =
{πST (ϕ), πQT (ϕ)}.

Let us assume also that in this discussion, the elementary dynamical system
is a Hamiltonian dynamical system (HDS) and takes the form

dqi

dt
= vi

mi
dvi

dt
= −

∂H

∂qi
+ fi , (38)

where i ∈ IN = {1, 2, ..., N}, H is a Hamiltonian and fi is a force acting on i-th
material point. Let q = {qi}, v = {vi}.
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Let us take a set of time instants t0 < t1 < ... < tK which belong to the time
interval T = [t0, t0 + T ], tK = t0 + T , and let IK = {0, 1, ...,K}. By means of
these instants we divide the time interval into the sum T =

⋃

k Tk, Tk = [tk−1, tk],
k = 1, ...,K. Then, for each k we can calculate the value of q̃k as

q̃k =
1

Tk

∫

Tk

q(t)dt . (39)

A value q̃0 = q(t0) is assigned to k = 0. With the aid of the sequence of
values {q̃k}, k ∈ IK we can generate a function q̃(t) = Iq({q̃k}), where Iq is an
approximation procedure. Now, we are able to decompose the variable q(t) into
two summands

q(t) = q̃(t) + δq(t) . (40)

Thus, q̃(t) represents the slowly varying part of q(t) and δq(t) its rapidly varying
part.

The question arises what properties should the approximation procedure Iq has
in order to describe real slowly varying process in accordance with the introduced
set {qk}. Slowly varying variable should gradually change its values between
given points. This fact should be expressed by possible small values of the second
time derivatives. Consequently, the approximation procedure Iq could be defined
as a process of finding a function q̃(t) which satisfy the following set of properties:



























Iq({q̃k}) = q̃(t) ,

supt∈T (|∂
2q̃

∂t2
|) → inf

q̃(τk) = q̃k , τk = 0.5(tk−1 + tk) ,

q̃(t) ∈ Cn , n ≥ 2 , t ∈ T .

(41)

It should be expected also that
∫

Tk
(q − q̃)dt =

∫

Tk
δqdt ≈ 0, where "≈" means

equality with an admissible error. An example of realization of above procedure
is given in the paper [42].

We assume here that temperature should be defined within deterministic dy-
namical system by means of an averaging procedure related to quickly varying dis-
placements of particles expressed at atomistic level. The precise definition of this
averaging is not simple since temperature has physical interpretation. Thereby,
the definition of temperature should lead to accordance with all effects which
are measurable as physical effects related to temperature. Nevertheless, we can
discuss formally the field of temperature having in mind above interpretation as
related to quickly varying processes.

Let V̄TM = {{T̄ , b} : {T̄ , b} = {Th, bh}, h ∈ IP}, VTM = {T (x) : x ∈ χ(B)},
where bh is function defined on the set {Tj} which allow us to take into account
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effects of values of Tj from neighboring dynamical system on value of Th. Role of
this function is similar as ah. Let us consider a function αT : V̄TM → VTM and
TK = αT ({Th, bh}).

Definition 6.4 The temperature field TK associated with the distinguished
family of subbodies K is the field obtained with the help of the function αT as
TK = αT ({Th, bh}).

The function bh is important since it enables us to take into account gradients
of temperature for instance. This can improve approximation of continuum dis-
tribution of temperature by means of the mapping αT . The function αχ assigns
a deformation function field χKκ to the set of its discrete values. The aim of this
function is to introduce a continuous field χ on the body B. Similar role plays the
function αT for T . Thus, the spaces of such fields Imαχ ⊂ Vκ and ImαT ⊂ VTM

are finite-dimensional, where Imφ means the image of the function φ.
Our previous discussion on collection of dynamical systems follows existence

of a set of notions introduced formally on EDS. We admit the existence of func-
tions m̃, Jϕij, cϕ, Eϕ, Wϕij , Rϕ which introduce masses mi, efflux of mass Jij ,
source of mass ci, efflux of energy Wij and source of energy Ri accompanied by
subsystems. Consequently, mentioned functions indexed here by ϕ are referred
directly to the elementary dynamical system. We use these functions to refor-
mulation of general form of balance of mass and energy equations defined for
collection of dynamical system to the case of continuum.

Let m̃ : MΠ → {{mh}} be mapping which determines a set of masses related
to collection of dynamical systems. Let MM = {{Mh}} and M : MK → MM

be a function which determines masses assigned to Kh. We have also that
πh ◦M(K) = Mh, where Mh is the total mass related to Kh. Mh are defined
by means of the relation M ◦ GK = i ◦ m̃, where i is the identity mapping.
Consequently, a system of mass related to continuum is introduced by means of
mapping m̃ defined on elementary dynamical system. Let B =

⋃

hKh, h ∈ IB,
where IB ⊂ IP is a set of indexes defining an arbitrary subbody B of the body
also denoted by B. Then, M(B) =

∑

h∈IB
Mh. Using this definition we obtain

mass related to subbodies as a kind of measure defined on the body.
Energy accompanied by the elementary dynamical system is introduced by

means of the function Eϕ : MΠ → RP . Then, energy E : MK → {Eh},
Eh = πh ◦ E({Kh}) assigned to each Kh, is defined by means of the relation
E ◦ GK = i ◦ Eϕ. As a result, we are able to define energy related to subbody
as E(B) =

∑

h Eh. We assume further that E = E + T is a sum of internal
energy and kinetic energy. Source of mass cϕ : MΠ → RP and source of en-
ergy Rϕ : MΠ → RP are defined now as C : MK → RP , R : MK → RP by



Problems related to theoretical modelling of production and behavior. . . 31

means of relations C ◦ GK = i ◦ cϕ and R ◦ GK = i ◦ Rϕ. These quantities are
defined for subbodies by means of expressions C(B) =

∑

hCh, R(B) =
∑

hRh.
Efflux of mass Jϕij : MΠ → R and efflux of energy Wϕij :MΠ → R are defined as
Jij : Ki×Kj → R, where Jij is determined by means of Jij◦(GKi×GKj) = i◦Jϕij

and Wij : Ki×Kj → R, where we obtain Wij from Wij ◦ (GKi×GKj) = i◦Wϕij .
Let us consider the boundary of the body ∂B = ∂

⋃

hKh. Then, J(∂B) =
∑

i∈IB ,m∈IP−IB
Jim and W (∂B) =

∑

i∈IB,m∈IP−IB
Wim.

We consider also ∂Bs ⊂ ∂B which is defined as ∂Bs =
⋃

h∈Is
(∂Kh ∩ ∂B),

Is ⊂ IB . There exists relation between ∂Bs and a set of Jim. We assume that the
pair of indexes {i, m} is associated with ∂Bs if ∂Bs is a border between subsystems
i andm. Then, J(∂Bs) =

∑

i∈Is, m∈Isi
Jim. With the help of introduced functions,

the balance of mass equation (21) interpreted in terms of continuum is given by

Ṁ(B) + J(∂B)−C(B) = 0 . (42)

with the additional condition satisfied for arbitrary ∂Bs ⊂ ∂B

J(∂Bs) = J̄(∂Bs) . (43)

The balance of energy equation (24) expressed in terms of continuum is assumed
in the following form

Ė(B) + Ṫ (B) +W (∂B)−R(B) = 0 , (44)

with the additional condition satisfied for arbitrary ∂Bs ⊂ ∂B

W (∂Bs) = W̄ (∂Bs) . (45)

Neglecting at the moment detailed representations of introduced below quanti-
ties, we formulate also the second law of thermodynamics as a supplementary
postulate. This is given with the help of the balance entropy expressed as

P (B) = Ṡ(B) +H(∂B)−N(B) ≥ 0 , (46)

where S is entropy, H is efflux of entropy and N stands for the source of entropy.
P represents production of this quantity.

Detailed continuum models can be considered when we introduce represen-
tations of quantities appearing in balance equations. Let us note that obtained
models are considered for chosen family of subbodies K. This induces that spaces
of fields on continuum are finite-dimensional. It means in turn that our contin-
uum models are directly finite-dimensional and no discretization procedure should
be applied.

Formulated on this way continuum models can be considered within multi-
scale modelling since, owing to their finite-dimensionality, they can be applied as
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a result of the dimensional reduction procedure. In particular, they can cooper-
ate with other discrete methods within multiscale approach. Therefore, unified
approach of molecular dynamics and continuum mechanics for solids can be dis-
cussed [42].

When we apply multiscale modelling with continuum approach on the reduced
level then we have to determine skeletal dynamical system. Premises for formu-
lation of this system follow from the aware option of scale of averaging which
is expressed by the family of subbodies K. Let us note that a similarity with
discretization method appears here. In both cases we obtain finite-dimensional
dynamical systems. We can also choose as K a family of finite elements which
can be interpreted as a set of subbodies. However, in the case considered in
this paper we define equations without intermediate stage which is done by an
infinite-dimensional continuum dynamical system which needs discretization.

Formally we can also introduce the skeletal dynamical system by a discretiza-
tion of infinite-dimensional model. Then, scale of averaging will depend on the
size of finite elements applied. However, since the scale of averaging was not de-
termined formally for the infinite-dimensional model than we are not sure whether
the constitutive equations are correct in relation to the scale of averaging. Form
of constitutive equations is just most dependent on the scale of averaging applied.

7 Role of multiscale mechanics of materials for thermal

barrier coatings

Thermal barrier coatings can have miscellaneous structures. They can be complex
which can be expressed in relation to various scales. Thereby, it justifies modelling
of properties and behavior of TBC by means of multiscale mechanics.

Thermal cycles and multilayer structure of thermal barrier coatings produce
stresses induced by frequently different thermal expansion of separate layers.
Then, ability to stress relaxation has connections with inelastic deformation.
Mechanisms of inelastic deformation can be various. We can consider slips at
nanoscale level. We can consider slip bands corresponding rather to microscale.
Porous structure needs considerations of inelastic deformation in larger scale then
the previous ones. Superplasticity should also be taken into account for appro-
priate range of temperatures. Then dynamical properties of interactions between
grains can be discussed also in relation to various scales.

Resistance of TBC against fracture and finally against damage is of key impor-
tance. As a result modelling of crack propagation within multilayer structure of
TBC at various scales can provide premises for design of TBC. Stress distribution
in zone near crack tip can be considered with various degree of approximation.
In particular we can have to do with martensitic transformation in this region.
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Small grains of partially stabilized zirconia can be transformed into monoclinic
phase due to stresses near the crack tip. As a result of this, stresses in the zone
decreases and crack propagation is stopped. This leads to increasing of toughness.
Thereby, we are able to design thougheness by controlling form and distribution
of grains of tetragonal phase dispersed in the cubic one in YPSZ [19].

Thermal properties of TBC are associated with thermal conductance which
should be lowered to a possibly small extent. Thus, various types of microstruc-
ture or even nanostructure can affect this property. We can decrease directly
thermal conductivity of material by modification of microstructure or produce
a porous structure which also decreases thermal conductivity.

Larger temperatures at which TBC works need consideration of thermal ra-
diation and ability to reflect this radiation. In such case, especially the multilayer
structures can be useful [38]. Let us note that thermal properties should be de-
signed together with mechanical ones since durability of TBC is very important
for its practical use.

Above discussion accentuates the role of a variety of phenomena which are
important for correct operation of TBC. This discussion indicates also which phe-
nomena should be modelled and which scale should be applied. In particular the
martensitic transformation is of great importance especially at nanoscale level.
Let us note that nanoscale model of the martensitic transformation has been de-
veloped in several papers [9, 24] mainly in case of shape memory alloys based on
copper. Therefore, it would be well justified to extend such models to the case
of ceramic materials and especially to the case of zirconia and partially stabilized
zirconia.

Nanoscale models of slip plasticity have been discussed in [7,9]. Furthermore,
extension of this approach to the case of cooperation of slip plasticity and marten-
sitic transformation at the nanoscale level is done in [9,25]. Development of such
approach could be convenient especially for possible plastic deformation of cubic
matrix of zirconia which has considerable component of yttria. Within this phase
the tetragonal grains with smaller content of yttria are produced. Then, cooper-
ation of plasticity and martensitic transformation is also imaginable in a similar
manner as in [25]. We can suspect also some additional mechanisms of inelastic
deformation in zirconia-yttria system. They can be similar to superplasticity or
even to be superplasticity for appropriate temperature range. Then, nanoscale
modelling seems to be adequate in order to reflect mechanisms of this kind of
inelastic deformation.

In so complex environment of phenomena as discussed above we should model
the fracture. In order to reflect correctly stresses near the tip of the crack we
should have at our disposal models which reflect, with appropriate precision,
all effects of inelastic deformation in this zone. This suggests also application
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of nanoscale modelling of crack propagation. Such a model has been discussed
in [8]. We can introduce nanoscale models phenomenologically by postulating
variables and constitutive equations. However, it seems that finally cooperation
between molecular dynamics and nanoscale modelling is inevitable. We have to
do with considerable temperature changes in case of TBC. This accentuates the
role of thermal processes within mechanisms of inelastic deformation. Molecular
dynamics is just appropriate for simulation of this kind of phenomena.

Let us note that produced TBC layer is not homogeneous. It has frequently
pores or it is a multilayer structure. Then, the nanoscale models of a small part
of material which is placed within the layer is responsible for a part of TBC
properties. Therefore, we should discuss the problem how composition of various,
different smaller parts of TBC creates new more averaged properties. We promote
the multiscale approach. Therefore, we should discuss possibility of placement of
a nonhomogeneous structure within the collection of dynamical systems. Let us
assume that we consider as an elementary dynamical system a nanoscale model.
Then, in case of nonhomogeneity of structure only a small part is represented
by our nanoscale model. In general, nonhomogeneity means in this case that
various nanoscale models can be applied to different parts of material which can
next have to be averaged. Let us consider a set of mappings πHα representing
in our discussion various applied nanoscale models related to homogeneous with
respect to modelling parts. Then, the whole mapping πNH corresponding to
nonhomogeneous material is expressed by

πNH = H(ΠαπHα) , (47)

where Π stand for the product of mapping operation. Thereby, skeletal dynamical
systems for nonhomogeneous material should be built on basis of possible smaller
homogeneous systems taking into account new qualitative effects corresponding
to the new scale which is expressed just by mapping H.

We have discussed a variety of phenomena which we can encounter in thermal
barrier coatings during their operation. Furthermore, we have indicated problems
associated with modelling of such phenomena. The first conclusion is that we sug-
gest nanoscale methods for modelling considered as a main segment of multiscale
approach for description of TBC. Such an approach seems to be the most conve-
nient since mechanisms of inelastic deformation are frequently well expressed just
in nanoscale. Let us notice that we cannot or should not apply the full multiscale
approach to each designed thermal barrier coating. First, it can be very complex.
Furthermore, methods of design can be sometimes restricted to some averaged
effects. We should be aware however which scale of averaging is appropriate for
our needs in the design.

Full multiscale approach seems to be rather a distant perspective. We have to
built first particular nanoscale models for various phenomena. Next, we should
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elaborate ways for construction of skeletal dynamical systems for various methods
of averaging. Cooperation with molecular dynamics within multiscale approach
is viewed also as a large area for investigation.

The next conclusion is associated with nanoscale modelling and their par-
ticular role. It would be convenient to have at our disposal entirely developed
nanoscale models of materials which could be applied in TBC design and valid
for the whole range of phenomena which we can expect during the TBC operation.
It accentuates the necessity of independent development of nanoscale modelling
for inelastic deformation in metals, alloys and ceramics.

8 Concept of unified description of the deposition pro-

cess and behavior of thermal barrier coatings

We have discussed above the need for description of behavior of thermal barrier
coatings within multiscale method of modelling in mechanics of materials. Having
such a description at our disposal we are able to express a design criteria as it
was discussed in Section 3.

We try to suggest a way which would be viewed as unified description of pro-
duction as well as mechanical behavior of thermal barrier coatings. The aim of
such a unification is achievement of possibility of design of TBC in order to trans-
late, in the next step, the design criteria into mathematically expressed properties
of the deposition process, Then, we would also obtain a criteria for design of the
deposition process. All this is aimed at production of thermal barrier coatings
with required properties. We assume that two segments of this unification are of
key importance. The first one is represented by the possibility of expression of
design criteria for TBC. The second one is manifested by notion of index of struc-
ture which inform us to what degree the method of production of TBC layers is
associated with initial preparation and realization of the deposition process. We
should discuss relations between mentioned two segments of mathematical mod-
elling. Let us notice that criteria for design are frequently related to a critical
condition for some phenomena. Let us mention here plastic deformation by slip
for instance. Initiation of slip is expressed by attaining a critical value of stresses
obtained during elastic deformation. Attaining of the critical condition changes
quality in behavior of material.

When we design a material we usually would like to obtain the resistance
against a process viewed as a property of this material. Critical condition for
crack initiation for instance, is also very important design criterion. However, let
us notice that discussed above criteria have various forms for various scale models.
The question is which criteria should be considered. Let us note that preparation
of the deposition process also depends on scale. In this case we have to do with
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the scale related to controlling of preparation of structure of material for deposi-
tion and with the scale associated with modelling of such process. It seems that
scale associated with design criteria should be associated with the scale which is
controlled during preparation and deposition process. However, this is not en-
tirely clear. Design of materials is associated with atomic composition and also
with larger its structures such as grains of single crystal for instance. Thus, it is
inevitable to discuss arrangement of atomic structure even in the case when we
are not able to control them precisely. Consequently, the best criteria for material
design are related to atomic scale.

Let us note also that controlling of preparation and realization of the deposi-
tion process can be associated with varying scale. At first stage we can prepare
a powder for instance, having grains of a given size. Next it can be deposited with
a determined precision which frequently leads to production of pores. However,
post-deposition process can also lead to recrystallization recovering a small scale
structure. All this support multiscale modelling of the preparation of deposition,
the deposition process as well as multiscale approach to modelling and design of
thermal barrier coating including even atomic scale.

Let us note that the free energy is an important mathematical object which
is present in models related to various scales. By means of this function we are
able to express various critical conditions. Let us mention for instance critical
condition for slip activation in a nanoscale model [7]. Within this model even slip
systems are defined by means of the free energy.

Tending towards unified multiscale approach to description of miscellaneus
phenomena in materials we postulate within nanoscale models critical conditions
for initiation of martensitic transformation and initiation of crack propagation also
by means of the free energy. Therefore, free energy is viewed as having convenient
properties for creating unified theoretical approaches in mechanics of materials.
Thereby, at larger scales than nanoscale we should prefer descriptions having free
energy as notion of key importance. Let us mention here a model of plasticity
which follows from [14] for instance. Consequently, it would be convenient to use
the free energy as an element of index of structure in stage of preparation of grains
of powder for instance. We can assume that

IP = {Ψ1, ...,ΨN} , (48)

which means that within this stage of preparation of material, its n-th grains have
the free energy Ψn, n = 1, .., N . Then, after the deposition the free energy related
to an assumed scale related to a small part of material placed between pores, has
the form

Ψ = ΦD(Ψ1, ...,ΨN ) , (49)

where the function ΦD represents the method of transformation of small particles
into larger one and calculating the free energy for such a structure.
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However, at larger scales we have to do also with various defect and pores in
particular. Then, still more averaged free energy should depend also on the index
of structure related to deposited material expressed previously by IM . Thereby,
the free energy is not a pure composition of simpler elements but also depends on
new variables. We can express this by

Ψ = ΦAV (Ψ1, ...,ΨN , IM ) . (50)

At this moment we do not specify any variables of the free energy. Rather we try
to comment where from the free energy follows.

Let us consider a set of variables of the free energy. For description of defor-
mation we can apply the strain deformation tensor e. In case of nanoscale models
variables are simpler but form of the free energy is more complex. Nevertheles,
the deformation by slip for instance, has a more clear structure at nanoscale level
than at more averaged description, where at the same material point various slip
systems can be activated. Therefore, critical conditions for slip for instance are
simpler at the nanoscale level. Let SNC be a hypersurface in space of strain ten-
sors. Let us assume that when deformation attains this surface a slip is activated
on a slip system. Thus, the hypersurface SNC represents just critical conditions
for slip activation.

In case of more averaged model the critical condition can also formally have
simple form as the hypersurface in space of strain tensors SAvC . However, then
with attaining the critical conditions many additional processes can be associated.
This is so since we have to do with larger degree of averaging. The subprocesses
can be represented by internal state variables for instance. Then, attaining of the
critical condition on the surface SAvC can be associated with attaining a manifold
Mξ by a set of internal state variables ξ.

The free energy is part of the skeletal dynamical system in case of multiscale
modelling by collection of dynamical systems. Transition between variables of
various scales is realized by means of mapping π as it was discussed in Section 6.
The skeletal dynamical system can be postulated arbitrarily in more simpler cases.
However, it can be also constructed by analysis of the form of EDS. Thereby,
we can introduce additionally a mapping πCRC which could be precisely defined
within whole multiscale modelling process, which transform critical conditions
between scales. Thus we have

πCRC(SNC) = {SAvC , Mξ} (51)

for the case discussed above between nanoscale slip plasticity model and a more
averaged plasticity model. Let us accentuate that we use the free energy in more
averaged description for determining of the critical condition.
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Above discussion presents an idea of πCRC mapping which cannot be in general
related to the plastic slip. This mapping represents transition between critical
conditions between various scales.

Let us consider the situation when our model of the deposition layer is rather
averaged. Then, expression of a designed property at this level can be associated
with considerations of the set π−1

CRC which represents a variety of structures at
a lower scale which leads to the averaged critical condition. Consequently, tran-
sition between scales, in case of criterion formulated at larger scale, can provide
a space for speculation how to manipulate by structures and also by indexes of
structures in order to satisfy the criterion.

Let us accentuate the key role of index of structure in unified modelling of be-
havior and production of TBC. Indeed, we should be aware where from the struc-
ture of deposited layer follows. It appears as a result of application of previously
prepared components to the deposition. Process of preparation is not always sim-
ple and deserves more attention in modelling. Let us mention the situation when
powder is produced, especially in case when we would like to control the nanos-
tructure. Too small particles of powder are not useful for spraying. As a result
larger particles are produced. However, then they have controlled nanostructure
in separated particles. Such a process is called the nanostructurization [43].

Consequently the index of structure

IPREP = {IP1, ...,IPn} , IPi = INanostr (52)

should have a part INanostr related to nanostructurization. In case when part of
INanostr contains also the free energy for such a powder particle then the problem
of modelling of preparation of powder particles can be complex.

Further role of index of structure is also important. Especially relation be-
tween IS and IM which are not entirely independent is important. Let us note
that mentioned indexes also depend on the scale of averaging applied in mod-
elling of the deposition process. It has been discussed in [6], where evolution of
deposited surface is described mathematically.

We can schematically summarize our considerations by introduction of some
operations. Let

Iα+1 = Oα(Iα) , (53)

where Oα is a mapping transforming index of structure Iα corresponding to a stage
α into index of structure Iα+1 corresponding to a stage α + 1. Then, whole
transformation of indexes of structure is expressed by

IF = OαF
◦ ...Oα+1 ◦ Oα ◦ ...OαI

(II) = OT (II) . (54)

Then, the mapping OT represents transformation of initial index of structure into
its final form and represents the whole technological process including deposition.



Problems related to theoretical modelling of production and behavior. . . 39

Unification of theoretical approach would be expressed concisely as finding the
relation between π−1

CRC and O−1
T .

Above discussion has been devoted to expression of concept of unified descrip-
tion of the deposition process as well as behavior of the deposited layer. Intention
of such unification is to create a theoretical environment for engineering activity
related to design of thermal barrier coatings form and its production.

9 Final remarks

Discussion carried out in this paper shows that theoretical modelling of production
and behavior of thermal barrier coatings is a complex problem. Controlling of the
deposition process is necessary in order to obtain appropriate structures of layers.
Furthermore, we should also control what is deposited. Therefore, modelling of
preparation of structure of material for deposition also should be theoretically
described. Profits from such modelling rest on possibility of expression require-
ments related to way of preparation of powder for instance, basing on previously
determined aims on properties which the TBC layer should have as final product.

Complexity of phenomena in materials creating thermal barrier coatings such
as for instance martensitic transformation, inelastic deformation based on various
mechanisms, possible superplasticity, considerable role of temperature in all men-
tioned processes indicate that nanoscale mechanics of materials should be applied.

Application of nanoscale in modelling allows us to model exactly particu-
lar mechanisms responsible for mentioned above phenomena. Construction of
nanoscale models can be carried out phenomenologically. Then, nanoscale mod-
els can be produced for needs directly following from particular phenomena. More
advanced approach which is also much more complex consists in application of
two-scale method of modelling which contains nanoscale model as a skeletal dy-
namical system and molecular dynamics method placed in elementary dynamical
system. It is expected that such an approach would be useful for explanation of
more complex phenomena in relation to temperature. Above discussion indicates
that thermal barrier coatings provides reasons for development of nanoscale me-
chanics of materials and multiscale approach.

This paper shows possible way which would theoretically unify the process
of design and production of thermal barrier coatings. This approach, in a suffi-
ciently advanced stage of development, would create theoretical environment for
discussion of premises on improvements of the deposition process and the whole
production of thermal barrier coatings.

Summarizing, we try to accentuate the fact that the aim of this paper is not
devoted to solve problems of a particular thermal barrier coating. In my opinion
we have to do with a more general question how to transfer engineering activity
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to objects smaller than those considered usually by engineers. Let us notice also
that nowadays nanotechnology develops as promising direction just in relation to
smaller objects. However, the question how to support nanotechnology by theo-
retical investigations is rather open. Frequently, traditional methods of mechanics
are applied. The question of more precise formalization of theoretical description
in this direction is rather not discussed. Let us mention for instance that scale
of averaging is not usually discussed when equations are applied. Therefore, pro-
moting thermal barrier coatings we have also opportunity to consider problems of
modelling viewed as a base for design at various scales. This paper accentuates
necessity of development of methods of modelling by formalization of scale of av-
eraging among others. This paper presents also the point of view of the author
on the context of modelling which thermal barrier coatings should have.

Received 1 December 2008
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