Identyfikatory
Warianty tytułu
Bittner non - classical operational calculus model for the backward difference
Języki publikacji
Abstrakty
W pracy skonstruowano -model rachunku operatorów Bittnera dla różnicy wstecznej u (k) = u (k) - u (k-1) w przestrzeni ciągów dwustronnych, w którym wyprowadzono postać wzoru Taylora. Dokonano uogólnienia modelu, rozważając operację u (k) = u (k) - u (k-1).
In this paper there is constructed the -model of the Bittner operational calculus for the backward difference u (k) = u (k) - u (k-1) in the space of two-sided sequences, in which a form of the Taylor’s formula is determined. Considering the operation of u (k) = u (k) - u (k-1) the -model is generalized.
Czasopismo
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Akademia Marynarki Wojennej
Bibliografia
- [1] Agarwal R. P., Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York 2000.
- [2] Anderson D. R., Taylor polynomials for nabla dynamic equations on time scales, ‘PanAmerican Math. J.’, 2002, 12 (4), pp. 17–27.
- [3] Bittner R., On certain axiomatics for the operational calculus, ‘Bull. Acad. Polon. Sci.’, 1959, Cl. III, 7 (1), pp. 1–9.
- [4] Bittner R., Algebraic and Analytic Properties of Solutions of Abstract Differential Equations, ‘Dissertationes Math.’, 41, PWN, Warszawa 1964.
- [5] Bittner R., Rachunek operatorów w przestrzeniach liniowych, PWN, Warszawa 1974.
- [6] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics, Addison- -Wesley, New York 1988.
- [7] Levy H., Lessman F., Finite Difference Equations, Pitman and Sons, London 1959.
- [8] Roman S., The Umbral Calculus, Academic Press, Orlando, FL 1984.
- [9] Wysocki H., Taylor’s formula for the forward difference via operational calculus, ‘Studia Scientiarum Mathematicarum Hungarica’, 2010, 47 (1), pp. 46–53 (first published online 4 July, 2009, DOI: 10.1556/SScMath.2009.1111).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM8-0001-0003