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Abstract 
Modeling of ship motions in waves concentrates in most applications on the response amplitude operator 

(RAO). This mathematically not demanding method of analysis is very attractive, but loses some essential 

information in certain situations. The objective of present contribution is to establish and investigate 

preliminary foundations for a seakeeping model as optimal for under keel clearance (UKC) estimation. 

A special attention was devoted to transients of motions, stationary harmonic motions, coupling between 

degrees of freedom, and the wave force transfer functions – all in the aspect of shallow water environment. 

 

 

Introduction 

The reduction of under keel clearance (UKC) 

due to the wave action, and the ship motions result-

ing thereof, beside some other motion phenomena 

(the squat, a roll during turning) as also affecting 

the UKC, is a serious problem for the safe opera-

tion of ports. The literature and science has just 

started to cover such aspects – e.g. [1]. 

Response amplitude operator (RAO) or, in other 

words, transfer function approach while simulating 

ship motions has its own advantages and dis-

advantages, even then, when we additionally keep 

track of phase shifts between the waves and the 

resulting motions. Assuming, one is only interested 

in the stationary (steady-state) harmonic oscilla-

tions, or the linear combination (superposition) of 

them, under external and also harmonic waves, the 

response operator is very useful in a lot of applica-

tion areas, and is easily to be computed. There is of 

course disregarded the transient stage (the so-called 

memory effect). The computations of RAOs are 

algebraic for usually linear motion differential 

equations (e.g. [2, 3]). They depend on the coeffi-

cients of underlying equations. 

For instance, the RAOs allow efficient investi-

gations on the static response characteristics of 

a ship, as in case of the hull design optimization or 

ship operation optimization in heavy weather. It is 

exactly a very fast way to compare competitive 

designs from the “long-term performance” point of 

view, and is a perfect concept for formulating / 

estimating various statistical (probabilistic) proper-

ties of ships motions in irregular waves. Besides, 

the RAOs (but expanded to accommodate the phase 

angles of motions), if combined with a sea spec-

trum, are capable of simulating the steady-state 

motions in the time-domain by providing a time 

series of random motions. The major drawbacks 

consist of difficulties with storing RAO values for 

finitely spaced absolute frequencies in the regions 

of resonance or zero encounter frequencies, and 

subsequently with computing the exact motion  

response in such regions for irregular waves. This 

could be resolved by additional recalculation of 

RAOs within these regions from the viewpoint of 

given purpose.  

However, RAOs are not the latest “state-of-the- 

-art” in the ship motions analysis, especially if the 

dynamic response is of primarily concern. For har-

monic excitations (according to the Fourier theory, 

any arbitrary function can be decomposed into 

a linear combination of harmonic functions) the 

motion output of the linear system starts to be har-

monic (expressed as sine or cosine) only after some 

time, dependent on the so-called time constant of 
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the system. RAOs concept gives a full description 

of the system response in this asymptotic, steady- 

-state case. The time constants can be deduced from 

the coefficients of equations. 

The coefficients of ship linear ODEs are gene-

rally the motion frequency-dependent (i.e. not  

being the pure time function) with particular regard 

to the added mass and damping terms. This results 

from the surrounding water action. The water flow 

velocity potentials, especially in the free surface, 

are widely used to calculate such effects. The  

direct, normal integration of the linear equations in 

such conditions can not be performed. This only 

can be done if the coefficients of such equations are 

assumed practically constant for the given applica-

tion, or some special integrals are pre-calculated – 

see e.g. [4, 5, 6, 7, 8].  

The bottom of a ship’s hull can be treated as 

a plane of the rectangular shape, the corners (ver-

tices) of which can be fixed according to the three 

motions (precisely their displacements) – heave, 

roll, and pitch – from the total six degrees of free-

dom (DOFs). It shall be remembered that these 

motions are connected with restoring force (the so- 

-called spring terms in the mass-damping-spring 

systems). Due to the ship’s symmetry of port and 

starboard side, the motions are to some extent  

decoupled in that, the surge, heave, and pitch  

(denoted as 1, 3, 5, the so-called symmetric mo-

tions), and the sway, roll, and yaw (referred to as 2, 

4, 6, named asymmetric motions), are being both 

developed independently. Within each group, the 

magnitude of coupling (interaction) between parti-

cular motions considerably varies – a lot factors are 

involved here. Having the heave, pitch, and roll 

characteristics, in terms of RAOs, one can evaluate 

the probabilistic properties of extreme motions of 

the hull bottom points e.g. for the risk calculation. 

But this is only one side of the problem.  

The other aspect is strongly connected with the 

transient (dynamic) behavior of motions. The ne-

cessity of fully dynamic approach arises when the 

ship motions (oscillations) are being studied with 

the aim of determining the under keel clearance, 

where a single touch of the seabed could really be 

dangerous. Since the governing equations are de-

coupled into two groups – two sets of three second 

order equations – any elementary motion in the 

time domain theoretically can be resolved into 

a linear differential equation of sixth order with 

reference to the motion displacement. Because 

a particular motion is coupled with additional two 

motions, the reduction of only one coupling (from 

the total two) decreases the equation order by two, 

here up to the fourth order. Without any coupling, 

the motion equation is of the second order. There 

are a lot of algebraic (analytic) methods in the  

mechanical or electrical engineering science to 

study the transient stage of a single degree of free-

dom oscillations, having essentially lower (mostly 

second) orders – e.g. [9]. In a lot of situations, 

1DOF models are really and surprisingly a good 

approximation of more complex motion phenome-

na. It is sometimes difficult to find the intensity of 

coupling just on the basis of equation coefficients. 

Switching off artificially some degrees of freedom 

in the general ship motions, the resulting RAOs can 

serve to establish simpler and more effective dy-

namic models for particular, narrower application. 

The research on the performance of impulse re-

sponse techniques for solving the linear equations 

with frequency-dependent parameters, in view of 

the motion transients, is scheduled in the future as 

the second step of current research. It can provide 

additional dynamic effects to those known from the 

constant coefficient equations. In the present paper 

the classical full 2
nd

 order model with constant  

coefficients is presented and studied for various 

dynamic (memory) effects, allowing a proper  

understanding and judgment of the situation. 

The problems with UKC are obviously attribut-

ed to the ship operation in shallow water (generally 

pertaining to a port area), in only which the motion 

displacements of the hull extreme points can reduce 

the under keel clearance down to zero. In such con-

ditions one should take a proper consideration of 

various shallow effects while computing the wave 

excitation generalized forces (in terms of forces and 

moments) and the hydrodynamic generalized forces 

(called the radiation forces, and consisting of the 

mentioned added masses / inertia and damping 

effects) [10, 11, 12]. Of special importance and 

interest seems to be the knowledge on wave spec-

trum in the investigated shallow water (SW) region, 

and additionally the validation limitations of tradi-

tional linear (superposition) theory of waves and 

ship motions – see e.g. [9]. In this context, much 

more simpler matter is the effect of shallow water 

on the wave encounter frequency.  

The shallow water conditions in our UKC  

concern, expressed as depth-draught ratio h/T, are 

much lower than 1.5 – the values 1.11.2 must be 

here the reference points. 

The following topics are studied hereafter corre-

spondingly: the transient significance in simulating 

seakeeping motions, the change of encounter velo-

city in shallow water due to the wave length (wave 

number), performance (accuracy) of various theo-

retical methods for estimating the hydrodynamic 

parameters of motion linear equations in waves for 
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SW, and finally the role of coupling between mo-

tions in 6DOFs and the importance of wave force 

transfer functions in the economy of developing the 

seakeeping models. 

The magnitude of transient in ship motions 

Although in the following the notations refer to 

the roll, the same applies to other motions – heave 

and pitch – since the equations are quite the same 

(linear and second order), so it is the solution. The 

difference only exists in the interpretation and par-

ticular values of coefficients. The roll is treated 

independently from other motions (in general the 

roll is coupled with the sway and yaw – see above) 

and is referred to as the pure (plain) roll.  

For the both, linear restoring and damping  

moment, the roll equation ( in [rad])reads: 

    tMGMgmNmJ xx   04444 2   (1) 

where: 

Jx – moment of inertia [kgm
2
]; 

m44 – added mass (inertia) [kgm
2
]; 

N44 – damping coefficient [kgm
2
/s]; 

m – ship’s displacement (mass) [kg]; 

g – gravity acceleration, 9.806 [kgm/s
2
]; 

GM – initial metacentric height [m]; 

Mx – external excitation moment [Nm]. 

The above expression can be rewritten in the 

more useful form: 

  tmx  
2
00442   (2) 

or 

  tmx  
2
02  ,     044  

 44

0
0

mJ

GMmg

x 


  (3) 

where: 

44 – non-dimensional damping coefficient  

[–], positive; 

0 – frequency of free (natural) undamped 

oscillations [1/s], positive; 

mx – external excitation moment function 

[1/s
2
] (having the meaning of angular 

acceleration, hence called the forced  

acceleration). 

The Laplace transform (s) of the response (t), 

given by Eq. (3), for the general case of mx(t) takes 

the form of: 
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where: 

0 – initial roll angle (displacement) [rad]; 

0 – initial roll angular velocity [rad/s]. 

Introducing the harmonic excitation as follows: 

   tmtm xx cos0 ,   
220




s

s
mtmL xx  (5) 

where mx0 is the amplitude of the excitation func-

tion, and  denotes the excitation frequency, one 

can finally get the below relation: 
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where  is the frequency of free damped oscilla-

tions according to: 

 2
440 1     (7) 

and 

   22222
0 4   D  (8) 

The term 
1

D  just represents the RAO, i.e. the 

ratio of response amplitude to the excitation ampli-

tude. In the frequency domain, the plot of RAO 

assumes different image as dependent upon the 

level of damping. A detailed graphical presentation 

and analysis of the RAO behavior for various fre-

quencies (the so-called amplitude-frequency or 

amplification characteristics), also including the 

phase characteristics, can easily be found in classi-

cal manuals on physics and/or mechanical engi-

neering science under the topic of forced oscilla-

tions (vibrations) of damped mechanical systems. 

One should keep in mind that the reported RAO 

plots generally refer to the constant coefficients of 

linear equations, that is not true for ship motions. 

The three phase angles in the particular cosine 

functions of (6) yield as follows (the information is 

here given in terms of sine and cosine, since the 

usual tangent function is ambiguous) 
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The mentioned in the previous chapter time con-

stant of the system is defined by: 

 


1
T  (12) 

and is understood as the elapsed time when the 

natural (inherent) oscillations are being reduced in 

the amplitude by ca. 63%. 

For the below simulations of transient, the con-

secutive four components of equation (6) have been 

marked accordingly: 

          tftftftft ba 2111   (13) 

where f1 stands for natural damped oscillations 

(with zero initial conditions), f2 symbolizes the 

forced oscillations, and f1a depicts the free damped 

oscillations as started from the non-zero initial roll 

angle 0. The term f1b for non-zero roll velocity will 

not be tested hereafter, thus the value 0  equal to 

zero is assumed. 

Figure 1 shows the simulation of (13) for three 

different values of the initial roll angle.  

The amplitude of forced steady-state oscillations 

is abt. 2.4 (the solid thick line). The time constant, 

ref. to Eq. (12), equals approx. 28 s. In the worst 

case of 0 = –2, the resulting (combined) roll  

motion during the transient (initial) stage is almost 

twice as large as the steady-state oscillation. Also, 

the image of roll variation is much far from the 

pure harmonic one. The practical convergence of 

(t) to f2(t) occurs after some 50 s. The functions f1 

and f1a have nearly identical plot, hence the natural 

oscillations f1 can be considered as being doubled. 

The situation is better for 0 = 0, since f1a va-

nishes. Hence, the contribution of natural damped 

oscillation is much lower under such conditions. 

The best case from the transient point of view  

is achieved for 0 = +2, in which f1 and f1a cancel 

each other, thus giving no memory effect. There-

fore, by a proper adjustment of the initial conditions 

“the memory effect” can be suppressed. So, the 

system starts the harmonic oscillations from the 

beginning  of  time.  Such  an  adjustment  directly  
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Fig. 1. The memory effect (transient) in roll oscillation devel-

opment 

follows from the required phase shift in the system 

response – namely, the initial condition for the dis-

placement (roll angle) shall be set to this phase 

angle (together with the corresponding value of 

initial velocity). This rarely happens in real life, 

mostly accidentally, because there is generally no 

correlation of the initial conditions and the excita-

tion itself.  

Other variants (combination) of the forced 

oscillations amplitude and the initial roll angle are 

also worthwhile to be studied. The investigated 

problems of possible increase of “dynamic” roll 

angle over the steady-state amplitude is analog to 

the well known dynamic transverse stability issues 

for small and large heel (roll) angles, in which the 

first maximum roll angle (“dynamic angle”) under 
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constant heeling moment can be related to the static 

angle. A relatively very low damping is usually 

assumed in that context, but the background 

governing equations for the dynamical stability are 

still the same as Eq. (6). 

Wave dispersion relation in shallow water 

The basic notion in studying the effects of wave 

on ship motions is the encounter frequency E 

characterized by: 

  cos vkE , 


π2df

k  (14) 

where: 

 – wave absolute circular frequency [rad/s]; 

k – wave number [1/m]; 

 – wave length [m]; 

v – ship’s forward velocity [m/s]; 

 – wave incidence angle [rad], [°], 0 for 

stern wave, 180 for head wave (i.e. trav-

eling from the bow to the stern). 

The specific value of k (and wave length) is de-

pendent on the wave propagation condition in the 

area, defined by the water depth h [m], and the 

wave frequency: 

  hfk , ,    hf ,   (15) 

Also useful in some applications is the 

knowledge of the wave profile velocity (celerity): 

 
T

c
df

 , where the wave period 


π2df

T  (16) 

Hence: 

  hfc ,
π2




  (17) 

The dependencies in (15) and (17) arise from the 

fundamental dispersion relation of the implicit non-

linear form: 

   2tanh  hkgk  (18) 

where g is the gravity acceleration. 

Figure 2 presents some numerical values of (15) 

and (17) for the conditions of shallow water. The 

water depths included (the visual identification of 

appropriate curve in figure 2 shall not pose a diffi-

culty) are 510 m every 1 m, 1530 m every 5 m, 

and the deep water as the reference (h = , DW). 

Ship motion RAOs in SW 

In the literature, there exist various formula-

tions, based on the potential strip theory (some-

times including 3D flow effects), for estimating 

hull hydrodynamic forces (of reaction / passive 

nature) and wave exciting (active) hydrodynamic 

forces. The hull forces are represented by introduc-

ing added masses and damping terms. Both types of 

coefficients, as mentioned before, are functions of 

the motion frequency (the concept is valid for har-

monic oscillations only) and forward speed. The 

motion frequency and ship speed affect the water 

potential flow field, and this influence is strongly 

emphasized in the shallow water conditions. The 

wave force for a harmonic wave is a function of the 

encounter frequency, also seriously dependent 

(through the wave potential) on the water depth, 

and in the steady-state of oscillations this results in 

ship motions of the same encounter frequency. The 

transient still keeps being unknown.  

Reverting to the considered motion response 

amplitude operators, these magnitudes comprise the 

SW effects on both hull forces and wave forces, 

they can be resolved into the transfer functions 
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from the wave to its force, and further from the 

wave force to the resulting motion. 

Figures 3 to 5 show computations of RAOs in 

roll-, heave-z, and pitch- performed by means of 

Journee’s SEAWAY software, see the website, for 

the reference container ship S-175 (LBP = 175 m, 

B = 25.4 m, T = 9.50 m, cB = 0.57, m = 24 700 t, 

GM = 0.98 m, GML = 203 m, CWP = 0.72) in the 

water depth ratio h/T = 1.5. The latter shallow water 

condition is limiting for the Ursell-Tasai method,  

as assuming (similarly to Frank’s method) no SW 

impact on the hydrodynamic coefficients of added 

masses and damping coefficients – the only SW 

effect is regarded in the wave potential. The Ursell- 

-Tasai method is compared with more sophisticated 

Keil’s method, where the full regard of SW effects 

is reflected, that predestines this method for much 

lower h/Ts (down to 1.05). 

The RAOs in figures 3 to 5 are plotted against 

the wave absolute frequency and are defined by: 
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where: 

WV – wave amplitude; 

z, ,  – motion amplitudes. 

The lack of systematic, very reliable validations 

of the theoretical methods, due to low availability 
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of experimental results, especially in SW, shall be 

properly accounted for in decision-making on the 

acceptable risk in a ship’s navigation under low 

UKC. Further research is recommended in this area.  

Both above theoretical methods nearly exactly 

converge at deep water. However, within the speed 

range of 10 knots (rather usual in shallow water-

ways) there is a considerable discrepancy between 

the methods. 

Coupling of motions in SW – sensitivity 
analysis 

In this chapter the effect of coupling with other 

motions (degrees of freedom) are studied with  

regard to the fundamental (for UKC) roll, heave, 

and pitch. 

The roll “4” is theoretically coupled with sway 

“2” and yaw “6” within the asymmetric motions. 

The heave “3” and pitch “5” are mutually depend-

ent, and additionally linked to the surge motion “1” 

within the set of symmetric motions. However, the 

equation of surge is not standard for classical strip 

methods for theoretical calculations of linear mo-

tions. Another theory and/or algorithm for surge 

motion linear coefficients is often combined. This 

is also valid for SEAWAY software. 

Figure 6 presents the roll RAO in the situations, 

based on SEAWAY computations, when other con-

tributing motions are forced to be zero i.e. having 

constraints superimposed upon. This is equivalent 

to keeping zero values for the corresponding cou-

pling coefficients in the set of linear motion equa-

tions. The following cases, both for DW (the ge-

neral reference) and SW (h/T = 1.2), are included: 

“246” – full roll coupling with sway and yaw; 

“4” – pure roll (no coupling); 
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“24” – roll affected by sway only; 

“46” – roll affected by yaw only. 

The wave incidence angles examined are from 

0 to 180 with increment of 30, the markings of 

which have been removed from figure 6 for the 

purpose of readability and rough evaluation of the 

effects. 

For DW, the case “46” gives lower RAOs, while 

on the other hand the variant “24” provides higher 

RAOs, so the sway and yaw cancel each other their 

effects on roll. That is why pure roll (the case “4”) 

is nearly identical to the fully coupled case. This 

would be a straight way to adopt the nonlinear 

model of pure roll. The situation with the roll RAO 

behavior changes in h/T = 1.2. The “24” case is 

almost the same as “246”, moreover, “46” and “4” 

also agree well. The latter leads to a conclusion that 

yaw coupling is not essential in simulation of roll in 

SW. The impact of sway shall be anyhow consi-

dered, because of possible accuracy problems at 

lower frequencies.  

The coupling within symmetric motions is also 

very interesting. The investigations carried out for 

the same S-175 container vessel, and operational 

conditions as above, also covered all combinations 

of coupling. The computational results have sur-

prisingly revealed absolutely no dependence of 

heave (being coupled only with pitch) on the surge 

motion. For the heave RAO, the case “135” against 

“35” does not exhibit any difference. The same is 

valid for RAO in pitch (being coupled only with 

heave) – “135” is also identical to “35” from the 

viewpoint of pitch motion. This specific behavior 

can be of course assigned to the surge equation 

algorithm implemented in SEAWAY. 

The mutual coupling of heave and pitch in all 

conditions of speed and water depth is however 

rather slight. The effect of pitch upon heave is prac-

tically negligible – the case “35” for heave well 

compares to pure heave “3”. Additionally, one 

should keep in mind that the speed and water depth 

effects are rather small in heave, at least for the 

SEAWAY output.  

When it comes to the behavior of pitch, the 

speed and water depth effects are more remarkable, 

but not too high. The impact of heave upon pitch is 

noticeable in the region of very low wave absolute 

frequencies (below 0.3). But for the rest of frequen-

cies it can be concluded that “35” also converges to 

pure pitch (the “5” case). In the SW condition, the 

dependence of pitch on heave is even lower. 

Since the results with regard to heave and pitch 

are not attractive for visual presentation – the plots 

of RAOs are similar to each other as stated above – 

they have been omitted in this paper. 

Force RAOs 

One of important aspects in an adequate model-

ing of seakeeping behavior is to properly measure 

or theoretically compute (the latter approach is 

more common for some reasons) the wave exciting 

forces. The wave forces, in terms of force or  

moment, consist of the Froude-Krylov (hydrostatic) 

and the diffraction (hydrodynamic) components. 

A good evaluation of wave forces, in addition to 

rather well recognized role of added masses and 

damping coefficients, essentially contributes to the 

seakeeping model quality. In view of the UKC 

problem, such wave forces are needed to be accu-

rately assessed under definite shallow water condi-

tions and combined with forward speed. 

While a lot of available computational methods 

for wave exciting forces well converge in deep 

water, some remarkable differences (due to inter-

nally incorporated assumptions and/or approxima-

tions) arise in shallow water. This really requires 

further investigations from the viewpoint of achiev-

able accuracy or asks for an appropriate judgment 

of the motion simulation output. There are major 

problems with the availability of experimental vali-

dation data. 

The usually adopted linear theory for the wave 

calculations results in the linear dependence of the 

wave force amplitude (in any mode of motion) on 

the wave amplitude. Such proportionality coeffi-

cients (they are functions of the wave encounter 

frequency) are often referred to as the wave force 

transfer functions, or simply the wave force RAOs. 

Figure 7 presents some output from the men-

tioned SEAWAY software for the same container 

vessel as in the previous chapters – only the for-

ward speed 10 kt case is included. The results are 

however plotted (for a legibility and a possible fur-

ther referencing) versus the wave absolute circular 

frequency, where the wave incidence angle (con-

sciously not shown) is a parameter to this family of 

curves. The presented wave forces relating to 

heave, roll and pitch modes of motion are made 

dimensionless as follows: 

  
WVWL

z
Fz

gA

F

0

RAO


  

  
WV

x
Mx

kmgL

M

0

RAO


  (20) 

  
WVL

y

My
kmgFM

M

0

RAO


  

where: 

Fz – exciting wave heave force [N]; 

Mx – exciting wave roll moment [Nm]; 
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My – exciting wave pitch moment [Nm]; 

 – water density [kg/m
3
]; 

AWL – waterplane ares [m
2
]; 

L – ship’s length (between perpendiculars) 

[m]; 

FML – longitudinal metacentric radius [m]. 

The analyzed methods of Keil and Ursell-Tasai 

for the computation of the wave forces themselves 

are identical in deep water conditions (h/T = ). 

However, they significantly differ if “shallow water 

corrections” are to be applied. The studied in figure 

7 condition of h/T = 1.2 is very representative, since 

the variation in behavior for other water depths 

(1.05 and 1.5), as also investigated, is very similar 

both, in shape and magnitude. The shallow water 

heave force by Keil is very close to the deep water 

instance, while the corresponding force by Ursell- 

-Tasai is almost twice lower. In contrast, the wave 

excited roll moment in SW by Ursell-Tasai is 

reaching the value of DW. The Keil’s roll moment 

in SW is much higher and is assuming a quite dif-

ferent shape, particularly in the low frequency 

range. Finally, the pitch moment by Ursell-Tasai is 

similarly much lower (here by 50%). Up to now, it 

cannot be decided which method is better suited for 

SW calculations, though the greater potential seems 

to be possessed by the method of Keil. Anyhow, 

further studies are recommended in this field, espe-

cially with other not mentioned procedures, as to 

gain the most comprehensive knowledge of the 

phenomena. 

It also shall be kept in mind that even the wave 

heave force itself can induce the pitch motion due 

to the mentioned coupling between degrees of free-

dom. 

Introducing in the present chapter the concept of 

wave force RAOs is very beneficial in discussing or 

supplementing the usual meaning/interpretation of 

the mechanical RAO, denoted by 
1

D in chapter 

1. Strictly speaking, the latter is essentially the 

transfer function between the excitation (of the 

force or moment nature) and ship motion itself. 
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Multiplying such a force-to-motion RAO (at dis-

crete frequencies) by the wave force RAO (called 

the wave-to-force RAO) provides the common un-

derstanding of the motion RAO (often named the 

wave-to-motion RAOs) as widely used in the field 

of ship seakeeping. 

Dividing the motions RAOs into two compo-

nents, the one related to the wave external (excit-

ing, forcing) action and other connected with the 

ship inertia dynamics, makes the modeling (tuning) 

of seakeeping behavior much easier. 

Figure 8 illustrates this process of splitting the 

seakeeping behavior among two items: the force 

RAO (on the right-hand side of motion equations) 

and inertia-related RAOs (constituting the left side 

of the motion equations), with the special focus on 

shallow water. The Keil’s method and the roll  

behavior were only used as an example. Such an 

approach can also be considered as a kind of a sen-

sitivity analysis. However, one should keep in mind 

that the demonstrated force-to-motion RAOs (the 

middle part of figure 8) include the “noise” from 

the usual coupling between degrees of freedom, 

though being rather minor as stated in the previous 

chapter. This of course assures that one finally  

arrives at “the full” standard motion RAOs (i.e. 

wave-to-motion RAOs). 

Presented in figure 8 the “standard” roll RAO 

(the upper part of this figure) corresponds to figure 

6 (the top). The wave roll moment RAO (the bot-

tom of figure 8) coincides with figure 7 (the middle 

part). Hence the force-to-motion RAO is written in 

nondimensional form by: 

  
 
 




Mx

Mx
RAO

RAO
RAO


  (21) 

and presented in the middle part of figure 8. 

By comparing all three rows of figure 8, it can 

be noticed that the most of seakeeping behaviour is 

Fig. 8. Demonstration of the wave “force-to-motion” RAOs 
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taken from the inertia part of the model (added 

masses and damping terms) for deep water, and 

from the wave force part for the shallow water con-

dition. However, in the latter case, in the aspect  

of the involved product of factors (and hence  

a sensitivity), the force-to-motion RAOs are also 

important. 

Conclusions 

Although the presented outcomes in the last three 

chapters are based on the SEAWAY software and 

the implementations of theoretical potential strip 

methods therein, other results in shallow water both, 

for the same container ship and other type and size 

of ships are welcome. The focus shall be made in 

such investigations on the accuracy of RAOs and 

equation parameters themselves. Both serve as dif-

ferent comparison / assessment indices of the result-

ing transient motion prediction reliability. A study 

on the role of coupling between degrees of freedom, 

from the viewpoint of the UKC seakeeping model 

simplification (reduction), is of utmost importance. 

Another question remains with regard to the role of 

the shallow water wave spectrum on the motion 

spectrum of ship’s bottom points. 

The proper (optimal) choice of the motion model 

structure would certainly allow the efficient numeri-

cal integration of the motion differential equations 

with frequency-dependent coefficients, particularly 

in real- and fast-time modes of motion simulation.  

In this context, a full integration of the seakeeping 

model with the ship manoeuvring (very low frequen-

cy) model, as providing the ship’s roll dynamic  

behavior in close turns and squat transients (in terms 

of sinkage and trim) is just a matter of time for UKC 

prediction. 
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