
Zeszyty Naukowe 30(102) 5 

Scientific Journals  Zeszyty Naukowe 
Maritime University of Szczecin Akademia Morska w Szczecinie 

2012, 30(102) pp. 5–11 2012, 30(102) s. 5–11 

Kinematic decomposition of a ship nondimensional trajectory 
in turning circle test 

Analiza kinematyczna bezwymiarowej trajektorii statku 
podczas próby cyrkulacji 

Jarosław Artyszuk 

Maritime University of Szczecin, Faculty of Navigation, Institute of Marine Traffic Engineering 
Akademia Morska w Szczecinie, Wydział Nawigacyjny, Instytut Inżynierii Ruchu Morskiego 
70-500 Szczecin, ul. Wały Chrobrego 1–2, e-mail: j.artyszuk@am.szczecin.pl 

Key words: ship manoeuvring, ship turning, trajectory, drift angle, yaw velocity (nondimensional), motion 

kinematics, curvilinear motion 

Abstract 
The paper presents basic principles of a ship’s nondimensional trajectory definition (for arbitrary 

manoeuvres) by means of drift angle and nondimensional yaw velocity. This enables faster and better tuning 

of mathematical model of ship manoeuvring motions against the provided full scale sea maneouvring trials 

(usually in a form of position trajectories) – since it is known the governing, basic factors behind the 

trajectory. A special focus has been applied to the standard turning circle test. 

Słowa kluczowe: manewrowanie statku, cyrkulacja, trajektoria, kąt dryfu, prędkość kątowa (bezwymiaro-

wa), kinematyka ruchu, ruch krzywoliniowy 

Abstrakt 
W pracy dokonano nowatorskiego i kompleksowego ujęcia kinematyki ruchu krzywoliniowego, szczególnie 

w odniesieniu do bezwymiarowej (mierzonej jednostkami długości statku) trajektorii statku podczas manewru 

cyrkulacji. Sformułowano analitycznie kształt trajektorii oraz jej ewoluty (położenia środków krzywizny). 

Ponadto przedstawiono praktyczne znaczenie i możliwości kształtowania trajektorii poprzez dobór parame-

trów zmian kąta dryfu i bezwymiarowej prędkości kątowej. Pozwala to zredukować problem kształtu trajek-

torii do dwóch parametrów o bardzo ważnej interpretacji hydrodynamicznej, co ma olbrzymie znaczenie 

w procesie identyfikacji i/lub walidacji matematycznego modelu manewrowania statku. 

 

 

Introduction 

The turning trajectory of a ship is apparently 

rather complex manoeuvring response. Due to a na-

vigation importance and availability of full-scale 

data (easy measurement by GPS techniques), it is 

often used to validate various ship manoeuvring 

prediction codes on the uppermost level – i.e. with 

regard to the combined output of final motion and 

without going into details (components). This way, 

it is possible to ensure the same (or quite similar) 

turning trajectory, in the tuning circle test for 

instance, by significantly different means. The 

adequacy and accuracy of particular regions in the 

manoeuvring mathematical models can then be 

questioned, which actually strongly limits the 

validity / application range of the model. This study 

is aimed to provide a solution to such problems in 

that the nondimensional trajectory (in ship’s length 

units) is used, which is further decomposed into the 

drift angle and nondimensional yaw velocity. 

Hence, the trajectory-based convergence / accuracy 

criteria (quality indices) for the mathematical 

models can be replaced with those comprising only 

the basic motions – drift and/or yaw response. The 

both latter items are much easier to be handled in 

the development process of manoeuvring models 

than the complex trajectory. 
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Fundamental terms in ship curvilinear 
motion kinematics 

Let us define: a) a moving ship-related, carte-

sian, right-hand, horizontal plane reference system 

Mxy, b) a similar but stationary earth-related co-

ordinate system OxOyO, c) a moving trajectory / 

curve-related Mn axes of the same orientation as 

Mxy – refer to figure 1.  

Vertical z-axes, from the reader’s eye to the fig-

ure’s plane, are also denoted for purpose of further 

conversion to 3D case. The moving body system 

origin is fixed to a point M that represents a geo-

metric middle of a ship (lying precisely at the inter-

section of the centre plane and the midship section). 

A ship (its origin) is assumed to follow a given 

trajectory l with linear velocity vxy and rotate with 

a yaw velocity z. The linear velocity (also referred 

to as the total / resulting velocity) is always tangen-

tial to l and can be decomposed to its components 

in ship body axes – the longitudinal (surge) velocity 

vx and transverse (sway) velocity vy. At the current 

(instant) position on the trajectory, defined by the 

pair of coordinates [xO, yO] (the symbol M is omit-

ted), a curvature circle (as tangential to the trajec-

tory) can be specified, the radius  of which is de-

pendent on geometric properties of the curve l.  
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Fig. 1. Definition of ship kinematics 

Rys. 1. Kinematyka ruchu statku po trajektorii – oznaczenia 

The radius is essentially a signed radius – if the 

circle centre (depicting a direction of convexity) 

lies to the right of the movement direction ( direc-

tion), it takes a positive value. It means the curva-

ture radius coincides with the positive part of the 

normal n. In the case of a hypothetical, reverse 

movement of a ship in figure 1, a negative radius 

is obtained. The radius can easily be derived from 

the trajectory equations, it is always (through the 

inherent geometric properties) perpendicular to the 

trajectory. It also instantly changes along the trajec-

tory together with the center of curvature circle (as 

lying on this perpendicular direction at distance  

from the ship’s origin M), which describes a curve 

called the evolute – in such a case the input trajec-

tory takes the name of involute.  

The trajectory definition can be given in a para-

metric form (more flexible) – an elapsed time t or 

travelled distance s is often used to parametrise the 

position coordinates [xO, yO]: 
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where  

 
t

xy ttvs
0

d   or    OOxy yxttvs dddd   (1b) 

or in a direct form: 

  OOO xyy   (1c) 

Concerning the parametric form and a turning 

circle manoeuvre, it is obvious that the discrete 

position points at constant parameter intervals will 

not be equally spaced along the trajectory only in 

the case of time as parameter. A ship is normally 

reducing her linear velocity while turning, the ve-

locity is even minimum during the steady phase of 

turning – i.e. when the circular trajectory is as-

sumed. So, initially the locations are spaced farther 

from each other due to the higher speed and these 

mutual distances vary with the varying velocity vxy. 

Introducing a trajectory definition in a dimen-

sionless form (by dividing all linear dimensions: xO, 

yO, and s by a ship’s length L, which is usually the 

length between perpendiculars) as the most conven-

ient to compare ships of different size and type 

from the viewpoint of similarity in ship hydrody-

namics, one gets: 
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where:  
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  OOO xyy   (2b) 

The nondimensional trajectory for a ship turning 

and stopping (in the latter aspect, also a nondimen-

sional distance as the length of the trajectory is 

often additionally introduced) is roughly independ-

ent from a ship’s size (represented e.g. by a ship’s 

length L). For a ship turning due to the stern rudder 

action also the independence from the initial linear 

velocity can be proved (assuming of course much 

the same propeller thrust loading, represented in 
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case of a fixed-pitch propeller by the ratio of  

advance velocity and propeller rpm). Considering 

different types of conventional ships and propulsion 

systems, however, the possible differences in non-

dimensional trajectory patterns are not too signifi-

cant for lots of standard manoeuvring regimes. 

For heading angle , trajectory angle  (known 

as the course over ground – COG, or the course 

made good – CMG) related to the body system 

origin M, and hull drift angle  shown in figure 1, 

both conventions of defining the possible range for 

angles are supported in the formulas derived here-

after. It does not matter whether an angle comes 

from the range  in radians, in 

which there is also no limit on the upper bound – 

the angle may continue up to infinity, and assume 

negative values as well, if necessary) or is con-

tained within the region  in 

radians, with the same level of flexibility as in the 

former case). The equivalency of both approaches 

comes from the inherent nature of the trigonometric 

functions involved (sine and cosine) – specifically 

from their symmetries and periodicity. The motion 

case in figure 1 is usual for the stern rudder applica-

tion, a ship always inclines (with her heading) to 

the trajectory interior thus “developing” a certain 

drift angle  to the outer side. The drift angle is 

usually positive for starboard turning, as also fol-

lowed by the positive yaw velocity z – the portside 

turning involves that the both variables simultane-

ously change in sign. 

In all situations, the following rule applies  

(taking signed values into account): 

    (3) 

The trajectory angle is essentially the angle of 

its tangent in a particular point: 
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According to the commonly known kinematic 

principles, well covered in mechanical engineering 

science (as actually / really adopted from the differ-

ential geometry of curves – see e.g. [1]) it can write 

with the full support of sign: 
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where the sign of  depends on the sign of d, i.e. 

whether  is increasing (positive ), or decreasing 

(negative ),
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or 
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or using the well-known ship-related terms (of lin-

ear or angular velocity nature): 
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where the following relationships have been used 

(see also Eq. 3): 
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But we also can write (see Eq. 1b): 
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or more conveniently:  
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where d / ds, as the inverse of curvature radius , 

is just called “a curvature” and usually marked by 

k, and finally get: 
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where 'z is the so-called nondimensional yaw ve-

locity, a very fundamental quantity in determining 

hull manoeuvring forces, which can also be written 

in a more canonical form: 
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The nondimensional trajectory (see Eqs. 2a and 

4) is thus characterised differentially by: 
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or in an integral form according to: 

 

 

 























s

O

s

O

ssy

ssx

0

0

dsin

dcos





,      sss
s

z















 




0

d   

  (11) 

where the drift angle  and nondimensional yaw 

velocity 'z (of a direct hydrodynamic interpreta-

tion) are the only two contributing factors. They are 

to be derived from the differential equations of ship 

manoeuvring motions. The usual differential equa-

tions, written for derivatives of vx, vy, z (versus 

time t and/or nondimensional distance s', the latter 

is equivalent to the so-called nondimensional time) 

on the left-hand side, can be rearranged as to di-

rectly provide derivatives of desired quantities: , 

'z, and vxy.  

The differential equation for vxy is needed only 

in the case of coupling / influence to , 'z – in 

other words, it is necessary when we are not able to 

write all involved hydrodynamic forces (e.g. of 

hull, propeller, rudder, etc.) as proportional to the 

linear velocity square v
2
xy. Such an adverse situation 

is surprisingly a frequent event in the classical ship 

manoeuvring with propeller and rudder – despite of 

relatively low Froude number (that is typical in ship 

manoeuvring and thus the velocity square law 

for hull forces is valid), it is very hard to keep 

the constant propeller thrust loading coefficient cTh 

(as function of the advance coefficient J) through 

all phases of manoeuvring, refer e.g. to [2]. While 

a ship turning – and thus the natural forward speed 

reduction – the thrust loading increases under con-

stant propeller / engine rpm or pitch. Hence finally, 

one can observe that both the propeller thrust 

and the part of rudder steering force / moment as 

originating from the propeller jet are kept almost 

constant – although the linear velocity square de-

creases, the propeller thrust loading coefficient at 

the same time increases to the same degree.  

The second part of the rudder excitation comes 

from a ship’s wake flow, the velocity of which is 

practically proportional to the ship’s forward veloc-

ity, and the force is dependent to the square of  

velocity – so, with the rudder and idling propeller 

(the so-called coasting turn) there is no a ship’s 

linear velocity influence on  and 'z. 

Of course, under certain circumstances one can 

attempt to introduce some valid approximations for 

the propeller and rudder manoeuvres and thus make 

the variation of  and 'z be independent from the 

linear velocity. Let us notice for example that the 

rudder lateral force and moment (as governing the 

initial but not the final drift angle and nondimen-

sional yaw velocity, correspondingly) are relatively 

low in comparison to the hull generalized forces – 

so the rudder forces can then be disregarded and the 

velocity square-related hull forces are solely used.  

According to the observations in full-scale and 

computer simulations with sophisticated manoeu-

vring mathematical models, it can establish the 

following relationship for a ship’s standard (con-

stant rpm and/or pirch) turning manoeuvre (even 

with large rudder angles) – also refer to [3]:  

A) The steady values of  and 'z are correlated 

according to the hull hydrodynamic characteris-

tics only. 

B) The steady value of  depends both on the rud-

der angle  and the propeller loading coefficient 

cTh during the steady phase of turning (a ship’s 

steady linear velocity has to be known in this 

case). 

C) The transient of both the drift angle and  

nondimensional yaw velocity, as far as we are  

concerned with the nondimensional distance s' 

as the independent variable, is practically not af-

fected by the initial ship speed / engine throttle. 

A major question is here arising with reference 

to the response “time constants”, e.g. in the first- 

or second order linear approximation (linearisa-

tion) of the differential equations. The detailed 

(comprising some more or less minor nonlinear 

effects) chart of  and 'z versus s' seems to be 

of less importance at the basic stage of research 

as performed in the present paper. In general, 

the “time” constants – the speed of increase – 

may be different for  and 'z. This is particu-

larly important to remember, since we make 

a linearisation of somehow nonlinear ship ma-

noeuvring at large rudder angle (even close to 

maximum one).  

Trajectory performance with first order 
linear models for drift and yaw  

For very small rudder (and thus resulting rather 

low drift angle and nondimensional yaw velocitiy) 

the well known, mutually coupled, linear differen-
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tial equations (of constant coefficients) can be con-

sidered for  (in radians) and 'z – the rudder angle 

 is here an input control: 
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where a1, b1, c1 and a2, b2, c2 are constants. Except 

for c1 and c2, as connected solely with the rudder 

hydrodynamic force, all other constants combine 

the effects from both a ship’s hull and rudder. b1 

additionally has a very important contribution from 

the centrifugal force involved in the development of 

drift angle. All the constants can be determined 

from the detailed description of hydrodynamic 

forces. 

This set of two first-order linear equations can 

easily be decoupled / resolved to the second-order 

linear equations for both nondimensional yaw ve-

locity (more investigated in the literature, often 

called the Nomoto second-order equation) and drift 

angle (less interest given in the literature) as sole 

functions of the nondimensional distance:  
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where all T-class constants, interpreted as nondi-

mensional time constants of the response are certain 

functions of the background constants in (12), as 

well as the the K-class constants, which are referred 

to as the amplification coefficients. Note that before 

and now there are still six parameters. Moreover, it 

can identify the hydrodynamic equations (12) based 

on the constants of the kinematic equations (13), 

which can be in turn determined / fitted from some 

full-scale manoeuvring behaviour. It also should be 

clearly emphasized that the most significant time 

constants on the left-hand side of (13) are equal / 

identical both for 'z and  – this effect can be  

explained through the inherent nature of the back-

ground set of linear coupled equations (12). Some 

other interpretation problems also arise here with 

regard to setting double initial conditions – in terms 

of d'z / ds' and 'z at s' = 0 (normally both equal to 

zero) – for eqotion (13a), as usual in the only yaw- 

-oriented application studies. Then, the initial value 

of  in eqotion (12) can not be zero that is against 

our frequent expectations. 

The equations (13), after adopting some ap-

proximation to the response (different criteria are 

often being defined here), can be reduced to the 

first-order linear equations (more extensively used 

due to their simplicity and still good power):
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The first equation (14a) is sometimes known 

as Nomoto (or K–T) first-order linear equation. 

The above processing – the conversion of second- 

to first-order – in the case of a ship manoeuvring 

shall be treated as an empirical fitting of higher 

order response to the first-order equation – see e.g. 

[4] – since it is very hard to state a firm hydrody-

namic theory for this. Formally, the first-order lin-

ear equations can be derived from (12), but under 

the assumption of no coupling between 'z and  
i.e. when b1 = a2 = 0 (or T1 = T2, or either T1 or T2 is 

diminishing to zero), that is really physically doubt-

ful. It is worthwhile to mention here for further 

reference that the linear first- and second-order 

response is well covered in the control engineering 

theory. 

For the purpose of present study – an investiga-

tion into the turning trajectory at large helm – it can 

suppose the following (the order of equations is set 

back to the original one): 
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where there are two different pairs of constants – 

Tb, Kb, Tw, Kw (in general being functions of , thus 

“making” the model really nonlinear), and which 

can be transformed to: 
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where 0 and 'z0 denote the steady (asymptotic) 

values of the corresponding parameters.  

The response of  (in radians) and 'z for the 

most interesting constant rudder ( = const) and 

zero initial conditions is thus given by: 
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Therefore, substituting (17) to (8) and (11) one 

gets: 
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 bw TsTs
wzz eeTss

 (18) 

where the first underlined term is responsible  

for the steady phase of turning (i.e. the circular 

trajectory), the other two components govern the 

unsteady or transient phase / leg of trajectory 

(sometimes called the initial spiral curve), 
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(19) 

The following figures 2, 3 and 4 show the effect 

of Tb and Tw on modelling the trajectory – s' is from 

the range 0,
 
20, the steady values assumed for  

and 'z are 25 and 0.6 correspondingly, the value 

0
+
 for Tb and/or Tw means an asymptotic approach 

to zero.  

Since the drift angle plays a somehow different 

role than the yaw velocity in the trajectory per-

formance, it has been possible to include the whole 

possible range of Tb i.e. from nearly zero up to in-

finity. Figure 2 therefore demonstrates the limits 

of trajectory change by means of Tb. Moreover, for 

a relatively low Tb (as compared to Tw) the so-called 

initial negative transfer (position shift) is experi-

enced – i.e. to portside for the starboard rudder 

turning. 
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Fig. 2. The effect of drift time constant Tb on trajectory 

Rys. 2. Wpływ stałej czasowej kąta dryfu na trajektorię 
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Fig. 3. The effect of yaw time constant Tw on trajectory 

Rys. 3. Wpływ stałej czasowej prędkości kątowej na trajektorię 
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Fig. 4. The effect of equal yaw and drift time constants 

(Tb = Tw) on trajectory 

Rys. 4. Wpływ równych stałych czasowych dryfu i prędkości 

kątowej na trajektorię 

The instantaneous centre of curvature 

The position of the curvature circle centre on the 

earth – coordinates denoted by xOC, yOC is defined 

by: 
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while in a ship moving reference system, the posi-

tion of curvature centre (i.e. relative to a ship) 

reads: 
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which finally and nondimensionally looks like: 
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Just for reference and further comparison, the 

following formula, taken from [5], presents the  

so-called instant pivot point of a ship dealt with as 

a rigid body: 
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sin
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z

PPy
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

cos

 (21) 

The term instant pivot point essentially differs 

from the curvature centre in that the former relates 

to a ship – a plane figure – subject to a combined 

translation and rotation about z axis, and thus pro-

duced local velocities over the figure’s area, while 

the latter corresponds to a single point movement – 

for example a ship’s origin – along a certain trajec-

tory. 

Based on (18), we havethere is in a nondimen-

sional form: 
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 (22) 

which converges during the steady phase (s') to 
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  (23) 

Conclusions 

Though lots of efforts in this study have been 

connected with the simplest (1st order inertia) mod-

els of drift angle and yaw nondimensional velocity 

development – giving very good qualitative indica-

tions – other more sophisticated and thus more accu-

rate description can be specified and investigated.  

Further research shall also go on with regard to 

the coordinates of a transition point on a ship’s tra-

jectory where the transient (unsteady) curve changes 

into the circular (steady) curve. It is worthwhile to 

know whether the steady phase of turning is assumed 

faster or slower. From each of these behaviours one 

can deduce the parameters of the background change 

of drift angle and yaw nondimensional velocity and 

set a proper, additional hydrodynamics in the 

manoeuvring mathematical model as to realise the 

observed effect on the trajectory. Determination of 

the aforementioned coordinates shall be treated and 

defined of course in practical aspects – e.g. introduc-

ing an approximate definition of convergence crite-

rion – since theoretically (asymptotically) there is no 

such transition. 
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