PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental characterisation and modelling of the thermo-viscoplastic behaviour of steel AISI 304 within wide ranges of strain rate at room temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie i doświadczalna weryfikacja termo-lepkosprężystych właściwości stali AISI 304 w szerokim zakresie prędkości odkształceń w temperaturze pokojowej
Języki publikacji
EN
Abstrakty
EN
In this investigation, thermo-viscoplastic behaviour of austenitic steel AISI 304 has been characterised in tension under wide ranges of strain rate at room temperature. This metal possesses an elevated strain hardening rate and ductility which enhance its capability for absorbing energy under mechanical loading. It has been observed that the rate sensitivity of the material is independent of plastic strain. Moreover, it has been noticed that beyond a certain level of loading rate the flow stress of the material sharply increases. In agreement with experimental evidences reported in the literature, this behaviour is assumed to be caused by the drag deformation mode taking place at high strain rates. Based on such considerations, the thermo-viscoplastic behaviour of the material has been macroscopically modelled by means of the extended Rusinek-Klepaczko model to viscous drag effects. Satisfactory matching has been found between the experiments and analytical predictions provided by the constitutive relation.
PL
W pracy scharakteryzowano termo-lepkosprężyste właściwości stali AISI 304 na podstawie prób rozciągania dla szerokiego zakresu prędkości odkształceń w temperaturze pokojowej. Stal ta posiada podwyższoną ciągliwość i stopień umocnienia odkształceniowego, które to cechy powiększają jej zdolność do pochłaniania energii mechanicznej. Zaobserwowano, że wrażliwość stali na tempo obciążeń jest niezależna od wartości odkształceń plastycznych. Co więcej, zauważono, że powyżej pewnej prędkości zmian obciążenia naprężenie płynięcia materiału gwałtownie rośnie. W zgodzie z rezultatami badań doświadczalnych opisanymi w literaturze założono, że zachowanie takie wywołane jest pojawieniem się tłumionej postaci deformacji charakterystycznej dla wysokich prędkości odkształcenia. Na podstawie przeprowadzonych badań zaproponowano makroskopowy model termo-lepkosprężystych właściwości stali w oparciu o rozszerzony model Rusinka-Klepaczki dla odzwierciedlenia efektu oporu wiskotycznego. Otrzymano zadawalającą korelację pomiędzy wynikami uzyskanymi z konstytutywnego modelu materiału oraz rezultatami badań doświadczalnych.
Rocznik
Strony
1027--1042
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
autor
autor
  • National Engineering School of Metz (ENIM), Laboratory of Mechanics, Biomechanics, Polymers and Structures, Metz cedex, France, rusinek@enim.fr
Bibliografia
  • 1. Abed F.H., Voyiadjis G.Z., 2005, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of BCC and FCC mechanisms of metals, Int. J. Plasticity, 21, 1618-1639
  • 2. Berbenni S., Favier V., Lemoine X., Berveiller N., 2004, Micromechanical modelling of the elastic-viscoplastic behaviour of polycrystalline steel having different microstructures, Mater. Sci. Eng., 372, 128-136
  • 3. Campbell J.D., Ferguson W.G., 1970, The temperature and strain-rate dependence of the shear strength of mild steel, Philos. Mag., 81, 63-82
  • 4. Clark D.S., Wood D.S., 1957, The influence of specimen dimension and shape on the results in tension impact testing, T. Am. Soc. Mech. Eng., 5, 77-85
  • 5. Clifton R.J., Duffy J., Hartley K.A., Shawki T.G., 1984, On the critical conditions for shear band formation at high strain rates, Scripta Metall., 5, 443-448
  • 6. Cowper G.R., Symonds P.S., 1952, Strain hardening and strain rate effects in the impact loading of cantilever beams, Brown Univ., Div. of Appl. Mech., Report no. 28
  • 7. De A.K., Speer J.G, Matlock D.K., Murdock D.C., Mataya M.C., Comstock R.J., 2006, Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel, Metall. and Mat. Trans., A37, 1875-1886
  • 8. Delannay L., Jacques P., Pardoen T., 2008, Modelling of the plastic flow of trip-aided multiphase steel based on an incremental mean-field approach, Int. J. Solids. and Struct., 45, 1825-1843
  • 9. Durrenberger L., Klepaczko J.R., Rusinek A., 2007, Constitutive modeling of metals based on the evolution of the strain-hardening rate, Journal of Engineering Materials and Technology, 129, 550-558
  • 10. Durrenberger L., Molinari A., Rusinek A., 2008, Internal variable modeling of the high strain-rate behavior of metals with applications to multiphase steels, Materials Science and Engineering, A478, 297-304
  • 11. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T., 2000, A new view on transformation induced plasticity (TRIP), Int. J. Plasticity, 16, 723-748
  • 12. Follansbee P.S., 1986, High-strain-rate deformation of FCC metals and alloys, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, 451-479
  • 13. Follansbee P.S., Kocks U.F., 1988, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall., 1, 81-93
  • 14. Huang M., Rivera-D´ıaz-del-Castillo P.E.J., Bouaziz O., Van der Zwaag S., 2009, A constitutive model for high strain rate deformation in FCC metals based on irreversible thermodynamics, Mech. Mat., 41, 982-988
  • 15. Johnson G.R., Cook W.H., 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of Seventh International Symposium on Ballistics, 541-547
  • 16. Kapoor R., Nemat-Nasser S., 1999, Comparison between high strain-rate and low strain-rate deformation of tantalum, Metall. Mater. Trans., A31, 815-823
  • 17. Klepaczko J.R., 1987a, A general approach to rate sensitivity and constitutive modeling of FCC and BCC metals, In: Impact: Effects of Fast Transient Loadings, Rotterdam, 3-35
  • 18. Klepaczko J.R., 1987b, A practical stress-strain-strain rate-temperature constitutive relation of the power form, J. Mech. Work Technol., 15, 143-165
  • 19. Klepaczko J.R., 1994, An experimental technique for shear testing at high and very high strain rates. The case of a mild steel, Int. J. Impact Eng., 15, 25-39
  • 20. Kocks U.F., 2001, Realistic constitutive relations for metal plasticity, Mat. Sci. and Eng., A317, 181-187
  • 21. Kocks U.F., Argon A.S., Ashby M.F., 1975, Thermodynamics and kinetics of slip, In: Chalmers B., Christian J.W., Massalski T.B. (Eds.), Progress In Materials Science, 19, Pergamon Press, Oxford
  • 22. Kumar A., Hauser F.E., Dorn J.E., 1968, Viscous drag on dislocations In aluminum at high strain rates, Acta Metall., 9, 1189-1197
  • 23. Mann H.C., 1936, High-velocity tension-impact tests, Proc. ASTM, 36, 85
  • 24. Molinari A., Ravichandran G., 2005, Constitutive modeling of high-strainrate deformation in metals based on the evolution of an effective microstructural length, Mech. Mat., 37, 737-752
  • 25. Nemat-Nasser S., Guo W.G., 2003, Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures, Mech. Mat., 35, 1023-1047
  • 26. Nemat-Nasser S., Guo W.G., Kihl D.P., 2001, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, J. Mech. Phys. Solids, 49, 1823-1846
  • 27. Nemat-Nasser S., Li Y., 1998, Flow stress of FCC polycrystals with application to OFHC Copper, Acta Mater., 46, 565-577
  • 28. Nguyen H.V., Nowacki W.K., 1997, Simple shear of metal sheets at high rates of strain, Arch. of Mech., 49, 369-384
  • 29. Nowacki W.K., Rusinek A., Gadaj S.P., Klepaczko J.R., 2004, Temperature and strain rate effects on TRIP sheet steel. Measurement of temperature by infrared thermograph, Proceeding 21th international congress of Theoretical and Applied Mechanics, ICTAM 2004
  • 30. Oussouaddi O., Klepaczko J.R., 1991, An analysis of transition from isothermal to adiabatic deformation in the case of a tube under torsion, Proceedings Conf. DYMAT 91, Journal de Physique IV, Coll. C3 (Suppl. III), C3-323 [in French]
  • 31. Regazzoni G., Kocks U.F., Follansbee P.S., 1987, Dislocation kinetics at high strain rates, Acta Metall., 12, 2865-2875
  • 32. Rodr´ıguez-Mart´ınez J.A., Pesci R., Rusinek A., Arias A., Zaera R., Pedroche D.A., 2010, Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures, Int. J. Solids and Structures, 47, 1268-1284
  • 33. Rusinek A., Cheriguene R., Baumer A., Larour P., 2008, Dynamic behavior of high-strength sheet steel in dynamic tension: experimental and numerical analyses, J. of Strain Analysis for Engineering, 43, 37-53
  • 34. Rusinek A., Gadaj S.P., Nowacki W.K., Klepaczko J.R., 2002, Heat exchange simulation during quasi-static simple shear of sheet steel, J. Theoretical Appl. Mech., 40, 317-337
  • 35. Rusinek A., Klepaczko J.R., 2001, Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, Int. J. Plasticity, 17, 87-115
  • 36. Rusinek A., Klepaczko J.R., 2009, Experiments on heat generated Turing plastic deformation and stored energy for TRIP steels, Mater. Design, 30, 35-48
  • 37. Rusinek A., Nowacki W.K., Gadaj S.P., Klepaczko J.R., 2003, Measurement of temperature coupling by thermovision and constitutive relation AT high strain rates for dual phase sheet steel, J. Phys. IV, 110, 411-416
  • 38. Rusinek A., Rodr´ıguez-Mart´ınez J.A., 2009, Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects, Mater. Des., 30, 4377-4390
  • 39. Rusinek A., Rodr´ıguez-Mart´ınez J.A., Klepaczko J.R., Pecherski R.B., 2009, Analysis of thermo-visco-plastic behaviour of six high strength steels, Mater. Design, 30, 1748-1761
  • 40. Rusinek A., Zaera R., Klepaczko J.R., Cheriguene R., 2005, Analysis of inertia and scale effects on dynamic neck formation during tension of sweet steel, Acta Mat., 53, 5387-5400
  • 41. Seeger A., 1957, The mechanism of glide and work-hardening in face centered cubic and hexagonal close-packed metal, In: Dislocations and Mechanical Properties of Crystals, J. Wiley, New York
  • 42. Taylor G., 1992, Thermally-activated deformation of BCC metals and alloys, Prog. Mater. Sci., 36, 29-61
  • 43. Voyiadjis G.Z., Almasri A.H., 2008, A physically based constitutive model for FCC metals with applications to dynamic hardness, Mech. Mat., 40, 549-563
  • 44. Zerilli F.J., Armstrong R.W., 1987, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys., 61, 1816-1825
  • 45. Zerilli F.J., Armstrong R.W., 1992, The effect of dislocation drag on the stress-strain behaviour of FCC metals, Acta Metall. Mater., 40, 1803-1808
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM7-0002-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.