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The effect of stabilization of unstable post-buckling behavior of a struc-
ture usually is obtained by changing its geometry. In this paper, a po-
ssibility of stabilization of the initially unstable post-buckling path for a
cylindrical shell under torsion by application of additional independent
loadings acting on the structure without changing the shape and size of
the shell is investigated. It occurred that axial tension improves the re-
sistance against buckling for the cylindrical shell under torsion and can
stabilize the unstable post-buckling path. On the other hand, internal
pressure does not stabilize the post-buckling path but it improves the
resistance of such a structure against instability.

Key words: post-buckling path, stabilization, cylindrical shell, torsion,
tension, pressure

1. Introduction

Thin-walled shells under different states of loadings can be subjected to loss of
stability, and their post-buckling behavior can be unstable. This means that
the loss of stability of such structures is associated with a snap-through. It
seems to be very dangerous, since it can lead to very large displacements and,
finally, to destruction of the structure. The post-buckling path for a cylindrical
shell under twisting moment is unstable. This type of behavior was discussed,
for example, by Volmir (1967) and Yamaki (1984).

The effect of modification of the post-buckling behavior is in most cases ob-
tained by changing size variables, which are usually dimensions of the designed
elements. It requires certain modification of the standard structural optimiza-
tion problem under stability constraints. Namely, post-buckling constraints of
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a special form added to the formulation of the optimization problem enable
modification of the post-buckling path, and the stable post-buckling path can
be created, even in the case of unstable behavior of the reference structure.
This type of problems were considered, for example, by Perry and Giirdal
(1995), Pietrzak (1996), Bochenek (1997, 2001), Cardoso et al. (1997), Mréz
and Piekarski (1998), Suasa et al. (1999), Jasion (2009).

In some practical engineering applications, changes of shape and dimen-
sions of a structure are undesirable or even impossible, for example, if the
structure is already designed or it must have prescribed shape and dimen-
sions. Then, a non-standard approach to such a problem is necessary.

In this paper, an alternative concept is applied, namely stabilization of
the post-buckling path is obtained by application of additional loadings ac-
ting on the shell without changing geometry of the optimized structure. These
loadings, in general, can be either active forces applied to the structure or
passive ones (reactions of additional supports), or both active and passive for-
ces acting simultaneously. The idea of increasing the buckling load for shells
by application of initial pretensions, which lead to stiffening of structures,
was presented, for example, in papers by Weingarten et al. (1965), Lofblad
(1959) (axial compression and internal pressure), Haris et al. (1958) (axial
compression and torsion, internal pressure), Berskowitz et al. (1967) (axial
compression, torsion and external or internal pressure) in the late 1950’s and
1960’s. However, the influence of an initial pretension on the stabilization of an
initially unstable post-buckling path has not been analysed at all. Such pro-
blems, for a finite-degree-of-freedom rod system that models behavior of a real
shell structure under external pressure was considered by Bochenek and Kru-
zelecki (2001). On the other hand, Kruzelecki and Krél (2006) and also Krol
et al. (2009) examined real cylindrical shells under external pressure, whereas
Kruzelecki and Trybuta (2007) investigated such shells under twisting mo-
ment. Some solutions were also presented by Bochenek and Kruzelecki (2007).
Those results showed that axial loadings can stabilize the initially unstable
post-buckling path. Mathon and Limam (2006) experimentally examined the
influence of internal pressure on buckling and the equilibrium path for a cylin-
drical shell under bending. They showed that the internal pressure and axial
tension due to this pressure applied to the cylindrical shell can significantly
increase the critical bending moment and even can stabilize of the post-critical
path.

In the present paper, the stabilization of the post-buckling path for an ela-
stic simply supported cylindrical shell under twisting moment is formulated as
a certain modified non-standard problem of optimization. Two different types
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of stabilizing loadings are investigated, namely axial tension, internal pressu-
re and both these loadings acting simultaneously. Calculations are performed
using the ANSYS code for elastic deformations of shells of different lengths
and thicknesses.

2. Formulation of the optimization problem

We consider an elastic simply supported at both ends cylindrical shell of the
length L, radius R, constant thickness h, loaded by twisting moment M
applied to both ends of the structure. The problem of optimal design against
instability is usually formulated as the maximisation of the minimal buckling
load for the given total volume of the optimized structure. In general, it is a
min-max problem under buckling constraints taken into account only in such
a standard formulation. In this paper, an alternative approach is proposed,
namely the results of post-buckling analysis and post-buckling constraints of
a special form are implemented into the formulation of the design problem.
Such an optimization problem with post-buckling and buckling constraints
is called the modified problem. A general classification of such problems was
given by Bochenek (2001).

In the present paper, it is assumed that stabilization of an unstable post-
buckling path can be obtained by application of an additional axial load
Ly, = N applied to the ends of the structure or by application of a uniformly
distributed internal pressure Ly, = p or by both these loadings Ly, = (N, p)
acting simultaneously (combined loadings), where Ly, denotes the loading
parameter defining additional stabilizing loads. The problem of optimization
can be stated as follows. The minimum value of the stabilizing loading para-
meter Ly, (N or por (N,p)), which leads to stable behavior of the shell, is
sought

Minimize Ly
(2.1)
‘ oM . ., 0’M | .,
subject to W(f ,Lyp) = a—fQ(f s Lnp) =0

where f denotes, in general, characteristic displacement of the wall of the
shell. The displacement f* in equality constraints (2.1) refers to the hori-
zontal inflexion point at the equilibrium path, Fig. 1. Conditions (2.1)9 lead
to elimination of the snap-through and, finally, one obtains a stable post-
buckling path even if the original equilibrium path is unstable. It is shown



648 J. KRUZELECKI, D. TRYBULA

in Fig. 1 where the thick line refers to the stable equilibrium path under the
minimum stabilizing load Ly, .

MA LNP >LNp min

Ly
modified path Np min

M*
Mmaz

_\’ initial path
r !
Fig. 1. Equilibrium paths for Ly, =0 and Ly, # 0

This formulation of the optimization problem contains only one design
variable Ly, (in three variants) and two constraints shown in equations (2.1),
which are imposed on the post-buckling state. They ensure stable behavior of
the cylindrical shell under twisting moment. The condition of constant volume
of the structure is automatically fulfilled because that formulation does not
take into account the modification of the shell geometry.

The equilibrium path, which was obtained by numerical geometrically non-
linear analysis, is given by discrete points. Therefore, constraints (2.1)y were
verified numerically (for any Ly,) using the finite differences method. To
obtain the horizontal inflexion point at the equilibrium path, which refers to
stabilization of the equilibrium path, one finds

M, 1 =M, = Mi+1 (2.2)

where M; denote values of twisting moment in three neighboring points distant
by Af from each other. That equality of moments was satisfied numerically

with very good accuracy under additional conditions

M, 1 — M;_

Mi—l < Mz < Mi-l—l M <e (23)

M;

where ¢ is the assumed small tolerance.

The search for the minimum stabilizing load Ly,, for which conditions
(2.2) and (2.3) are satisfied and the horizontal inflexion point is obtained
with the assumed accuracy, was performed using the algorithm presented in
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Fig. 2. Tt starts from the assumed value of the stabilizing load Ly, for which
the equilibrium path is generated using the ANSYS code. If condition (2.3);
for the stabilizing load Ly, is not satisfied in the vicinity of the expected
horizontal inflexion point then its value is increased by using the relation
Ln,;,, = alLy,, (o> 1), and the new equilibrium path is generated for the
new Ly, . Otherwise, condition (2.3)2 is checked out. If that condition is
satisfed, it means that the minimal stabilizing load L N,; = Ln, is found and
the horizontal inflexion point is obtained with the assumed accuracy, otherwise
Ly, is decreased using the relation Ly, ., = BLn,; (8 < 1), and the new
equilibrium path is generated for the changed value of the stabilizing loading
Ly,;,,- Such a procedure is repeated until conditions (2.3) are satisfied or the
final number of iterations j.q. is reached. During the iteration procedure,
conditions (2.3) are verified not for the whole equilibrium path but only for
that part of it which corresponds to sufficiently large displacements, f > f
The minimum displacement f from which conditions (2.3) are checked out
depends on Ly, and .]? It is apprioprately updated for each iteration. The

displacemnts ]?> f1, where f; corresponds to M4, at the equilibrium path
for Ly, = 0, Fig.2. The number of necassary iterations clearly depends on
the starting point Ly,,, but quite fast convergence was obtained assuming
a=1.05 3=0.97.
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Fig. 2. Flowchart of the proposed concept of seeking for the minimum stabilizing
load
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3. Variations of stabilization

Stabilization of the post-buckling path for cylindrical shells can be achieved, at
least, in three different ways, namely: by direct application of additional ten-
sile loadings (active loadings), by imposing additional constraints connected
with displacements (passive loadings) and by application of the 'mixed variant’
consisting of both these types of loadings. These three variants of stabiliza-
tion are discussed in details by Krdl et al. (2009) for cylindrical shells under
external pressure. It occurred that the way connected with a direct application
of additional loadings, called the ’active loadings’, which are independent of
deformations of a structure, is the most efficient one. This variant is applied
in the present paper. In the case under consideration with two different inde-
pendent stabilizing active loadings, namely an axial tensile force and internal
pressure, there are three basic variants of application of additional loadings
which can lead to stabilization of the post-buckling path:

(a) Application of the axial force N only (Ly, = N, pressure p = 0) to
the ends of the shell before the twisting moment M is applied. In this
case, the minimum value of the axial force N which stabilizes the post-
buckling path is sought.

(b) Application of the internal pressure p only (Lyn, = p, axial force
N = 0) to the shell before the twisting moment M is applied. In this
case, the minimum value of the internal pressure p which stabilizes the
post-buckling path is sought.

(¢) Simultaneous application of the axial force N and internal pressure p
(combined loading Ly, = (N,p)) to the shell before the twisting mo-
ment M is applied. In this case, the minimum value of the loading
parameter Ly, which stabilizes the post-buckling path is sought.

In each case (a), (b) and (c) discussed above, values of additional loadings
(N, p, (N,p)) are independent of the twisting moment during deformations
of the structure, and they are also independent of deformations themselves.
These three variants of stabilization of the post-buckling path and the loading
sequence are presented in Fig. 3.

4. Results of calculations

Calculations were performed for three variants of loadings discussed above,
using the ANSYS code for elastic deformations of shells of different lengths
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Fig. 3. Three variants of stabilization and loading sequence

and thicknesses. We present the results only for shells with the length pa-
rameters: L/R = 1.0, 2.0 and the thickness parameters h/R = 0.02, 0.005,
assuming that the radius is constant, R = 1 m. The material is defined by the
following material constants: Young modulus E = 200 GPa, Poisson’s ratio
v = 0.3. The reference stress oy (09 = 225 MPa) was applied to define the di-
mensionless axial stress s = 0,/09 = N/(Aoy) and dimensionless hoop stress
p* = og/oo = pR/(hop) used as a measure of the stabilizing axial force and
internal pressure, respectively.

To obtain the equilibrium path using the ANSYS code, it was necessary
to introduce small initial geometrical imperfections into a perfect structure.
Then, the ANSYS standard ’Arc-Length’ algorithm based on the Riks and the
Newton-Raphson methods was used. The initial imperfections in form of the
buckling mode connected with geometry of the considered structure and with
type of loadings were applied. It was found that possibility of stabilization
of the postbuckling path did not depend on the magnitude of a small imper-
fection A but the introduction of geometrical imperfections was necessary to
follow the postbuckling path using the ANSYS code. On the other hand, the
stibilizing loads could depend on A and thus the convergence of the applied
procedure would strongly depend on A as well. It was decided that in each
considered case, the magnitude of the imperfection A was chosen in such a
way that the relative small decrease of the critical twisting moment, in com-
parison with the perfect structure, was held within the same assumed small
tolerance. It gave a possibility to compare the results. It occurred that the
value of A, which decreased the critical twisting moment by less than 5% — it
means 5% tolerance — was a good compromise between the above mentioned
conditions.
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4.1. Shells subject to axial force only

Figure 4 presents the post-buckling paths in the dimensionless coordinates:
M/M., and /e, where M., denotes the critical twisting moment (maxi-
mum moment at the equilibrium path for N = 0) and ¢ stands for the angle
of torsion of the shell, for two different shell geometrical parameters: L/R = 1,
h/R =0.02 and L/R =2, h/R = 0.005.

| L/R=1, h/ R=0.020| [L/R=2, h/R=0.005)
3.0 m 3.0
SR (4 = e B
= I\ 71/ (3) =
20 ~( /,_’ =1 (2) 20
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0 0

6
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Fig. 4. Post-buckling paths for four different stabilizing forces N

As a measure of the applied active axial force, we took dimensionless qu-
antity N* = s/sg4qp. The value of the minimum stabilizing force N (ssqp)
depends on geometry of the shell. The values of s, are given in Table 1 for
all considered cases. Broken lines (1) represent the equilibrium paths for shells
under twisting moment only, it means the classical post-buckling paths for
simply supported elastic cylindrical shells of constant thickness under torsion.
Lines (2), which prescribe still unstable equilibrium paths, were obtained for
axial forces smaller than the stabilizing ones, namely 50% of the stabilizing
axial tension. On the other hand, lines (3) represent the stable post-buckling
paths obtained for the minimal needed axial tension (N* = 1.0). It means
that those equilibrium paths satisfied conditions (2.1)2 and the horizontal in-
flexion point occurred at those curves. Lines (4) were obtained for the axial
loading 50% larger than the stabilizing one. It should be stressed that the
stabilization of the post-buckling paths by axial tension was obtained for all
considered shells.

In Fig. 5a, shape of the deformed shell (L/R =1, h/R = 0.005) for the twi-
sting moment and stabilizing tension N* = 1.0, referring to torsion ¢/@., ~ 2
at the equilibrium path, is presented. Figure 5b shows distribution of the Mises
equivalent stress, obtained for deformations presented in Fig. 5a.
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Table 1. Values of sgp for all considered cases

h/R =0.005 | h/R = 0.02
L/R=1 2.9 8.8
L/R=2 2.6 10.9
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Fig. 5. Shape of the deformed shell (a) and distribution of the Mises equivalent
stress (b)

4.2. Shells subject to internal pressure only

In Figure 6, the post-buckling paths for two different shells defined by:
L/R=1,h/R=0.005and L/R =2, h/R = 0.02 are presented, where broken
lines (1) refer to the classical post-buckling curves. For increasing values of the
internal pressure, defined here by p*, we obtained subsequent lines (2), (3), (4),
whose shapes are similar to each other (for the same shell), namely the post-
critical parts of these curves are practically parallel to each other. It means
that the internal pressure has no influence on stabilization of the post-buckling
path. Such a phenomenon was observed for any value of the internal pressure
and any geometry of the considered shells.

The equilibrium paths obtained in geometrically non-linear analysis and
presented for chosen geometry in Fig. 6, show higher values of the critical
twisting moments at the presence of internal pressure in comparison with
the structures without such an additional loading. It means that the internal
pressure improves resistance against buckling for shells under torsion. In Fig. 7,
influence of the internal pressure on the critical twisting moment is shown.

In Fig.8a, shape of the deformed shell (L/R = 1, h/R = 0.005) for the
twisting moment and internal pressure p* = 1.0, referring to torsion /@, ~ 2
at the equilibrium path, is presented. Figure 8b shows distribution of the Mises
equivalent stress obtained for deformations presented in Fig. 8a.
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Fig. 6. Post-buckling paths for four different internal pressures p
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Fig. 7. Effect of internal pressure on the critical twisting moment

Fig. 8. Shape of the deformed shell (a) and distribution of the Mises equivalent
stress (b)
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4.3. Shells subject to both axial force and internal pressure

Figure 9 presents the post-buckling paths for the shell with L/R =1 and
h/R = 0.005 under combined stabilizing loadings Ly, with different contribu-
tion of N* and p*. Broken line (1) represents the classical post-buckling path
for the shell subject to the twisting moment only whereas line (2) refers to
the stabilized equilibrium path only by axial tension with N* = 1.5 (p* = 0).
A small internal pressure, p* = 0.25, increases the critical twisting moment
and the post-buckling path (line (3)) remains stable. The same situation is
observed for p* = 0.5 and p* = 1.0, namely post-buckling paths (4) and (5)
remain stable as well. On the other hand, larger values of p* cause destabiliza-
tion of the post-buckling paths (lines 6 and 7) but the applied p* increases the
critical loads. It means that the internal pressure improves resistance against
buckling of shells under twisting moment but it can destabilize previously the
stabilized post-buckling path by the axial tensile force.
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Fig. 9. Post-buckling paths for the axial force and internal pressure

Figure 10 presents relationships between the minimum stabilizing axial
force and internal pressure for all considered shells. It shows that applica-
tion of any internal pressure demands larger axial tension to stabilize the
post-buckling path. On the other hand, these curves allow one to choose an
appropriate couple of loadings (N*,p*) which can lead to stabilization of the
post-buckling path for the shell subject to twisting moment.
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Fig. 10. Minimum axial force stabilizing the post-buckling path vs. internal pressure

5. Final remarks

Numerical analysis showed that axial tension can improve resistance against
buckling of a cylindrical shell under twisting moment. It can also stabilize the
post-buckling path without any modification to geometry of the structure. On
the other hand, the internal pressure cannot stabilize of the post-buckling path
but it can substantially increase the critical twisting moment in comparison
with a structure loaded by torsion only. Simultaneous application of both
considered additional loadings improves resistance of the shell under torsion
against buckling, but stabilization the post-buckling path for the thus loaded
structure requires a larger force in comparison with the structure stabilized
by the axial force only. Because of a rather high level of stresses obtained in
the elasticity analysis, the possibility of stabilization of the post-buckling path
for elasto-plastic deformations of cylindrical shells subject to torsion should
be verified.
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Optymalne rozcigganie osiowe i ciSnienie wewnetrzne stabilizujace Sciezke
pokrytyczng dla skrecanych powlok cylindrycznych

Streszczenie

Efekt stabilizacji niestatecznego zachowania konstrukeji osiagany jest zazwyczaj
przez modyfikacje jej geometrii. W pracy tej badana jest mozliwos¢ stabilizacji pier-
wotnie niestatecznej $ciezki réwnowagi dla cylindrycznych powlok skrecanych bez
zmiany jej geometrii i wymiaréw, mianowicie przez zastosowanie niezaleznych, do-
datkowych obciazen przylozonych do konstrukcji. Okazalo sie, ze rozciaganie osiowe
poprawia odporno$¢ na wyboczenie powloki skrecanej i moze prowadzi¢ do stabili-
zacji jej niestatecznej $ciezki rownowagi. Natomiast dodatkowe cisnienie wewnetrzne
nie powoduje stabilizacji pokrytycznej Sciezki, ale podnosi odpornoéé konstrukeji na
utrate statecznosci.
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