Identyfikatory
Warianty tytułu
Rozwiązanie Fouriera dla przewodu akustycznego z bocznikującym układem sterowania
Języki publikacji
Abstrakty
In the present work, a semi analytic approach aimed at estimating the effects on reduction of the pressure sound level by synchronised switched shunt logic is described. The displacement field within a 1D longitudinal air column through a Fourier series expansion has been formalised by assigning a sinusoidal perturbation and fluid-structure interface condition on the left and right boundaries, respectively. To simulate the no control operative condition, the solution has been computed for the entire time domain, keeping invariant all circuitry properties; then for the switch working modality, the solution has been computed by splitting the entire time domain into partitions; for any partition, specific circuitry properties (e.g. piezo voltage, electrical field...) have been selected. Based on the displacement information, the related sound pressure level has been compared for no controlled and controlled operative conditions, with and without signal amplification.
W pracy zaprezentowano pół-analityczne rozwiązanie zagadnienia redukcji poziomu ciśnienia akustycznego w przewodzie za pomocą zsynchronizowanej metody bocznikowania. Opis pola przemieszczeń wewnątrz jednowymiarowej kolumny powietrza sformalizowano rozwinięciem w szereg Fouriera przy uwzględnieniu sinusoidalnie zmiennych zaburzeń na prawym i lewym brzegu przewodu. Dla przypadku z wyłączonym układem sterowania rozwiązanie obliczono w całej dziedzinie czasu przy utrzymaniu stałych parametrów obwodu elektrycznego, natomiast dla trybu sterowanego dokonano analizy, dzieląc przedział czasu na fragmenty. W każdym z nich charakterystyczne cechy układu sterowania (np. napięcie przykładane do piezoelektryków, natężenie pola elektrycznego...) dobrano w odpowiedni sposób. Na podstawie obserwacji przemieszczeń porównano poziom ciśnienia akustycznego dla warunków z wyłączonym i włączonym sterowaniem oraz z i bez wzmocnienia sygnału.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
479--504
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
Bibliografia
- 1. Ameduri S., Ciminello M., Concilio A., 2007, Semi-analytical solution of a structural system controlled by a switched shunt architecture, Proceeding of the 36th International Congress and Exhibition on Noise Control Engineering – Session ANVC ”Active Noise and Vibration Control”, Istanbul, Turchia, Paper IN07-032
- 2. Boyce W.E., DiPrima R.C., 2008, Elementary Differential Equations and Boundary Value Problems, Jhon Wiley & Sons Inc, seventh edition, 621-655
- 3. Ciminello M., Ameduri S., Calabr`o A., Concilio A., 2008a, Synchronised switched shunt control technique applied on a cantilevered beam: numerical and experimental investigations, JIMSS, 19, 9, 1089-1100
- 4. Ciminello M., Deu J.-F., Ohayon R., Ameduri S., 2008b, Vibration reduction of structural-acoustic systems using synchronized switch damping techniques, Proceeding of 2008 ASME International Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicot City, MD, USA, Paper SMASIS08-320
- 5. Ciminello M., Lecce L., Ameduri S., Calabr`o A., Concilio A., 2008c, Switched shunt control implemented through a PZT network embedded within a composite panel: design, manufacture and test, submitted to JIMSS-08-452
- 6. Clark W., 1999, State switched piezoelectric systems for vibration control, Structure, Structural Dynamics and Materials AIAA Journal, 1533, 2623-2629
- 7. Clark W., 2000, Vibration control with state-switched piezoelectric materials, Journl of Intelligent Material Systems and Structures, 11, 263-273
- 8. Collinger J.C., Wickert J.A., 2007, Adaptive piezoelectric vibration control with synchronized swtching, Porceeding of ASME International Mechanical Engineering Congress and Exposition, IMECE 2007-41427, Seattle, Washington, USA
- 9. Corr L.R., 2001, Investigation of real-time switching of piezoceramic shunts for structural vibration control, PhD Thesis, School of Engineering, University of Pittsburg
- 10. Corr L., Clark W., 2001, Energy dissipation of piezoelectric semi-active vibration control, Journal of Intelligent Material Systems and Structures, 12, 729-736
- 11. Corr L., Clark W., 2002, Comparison of low-frequency piezoelectric switching shunt technique for structural damping, Smart Materials and Structures, 11, 370-376
- 12. Corr L., Clark W., 2003, A novel semi-active multimodal vibration control law for a piezoceramic actuator, Journal of Vibration and Acoustics, 125, 214-222
- 13. Crawley E.F., de Luis J., 1987, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, 25, 10, 1373-1385
- 14. De Marneffe B., Horodinca M., Preumont A., 2008, Vibration isolation via shunted electromagnetic transducer, Proceedings of ISMA2008, Leuven, Belgium, isma2008-0499
- 15. Ducarne J., Thomas O., Deu J.-F., 2007, Structural vibration reduction optimization by switch shunting of piezoelectric elements, Proceeding of ASME International Mechanical Engineering Congress and Exposition, IMECE 2007-41427, Seattle, Washington, USA
- 16. Erturk A., Inman D.J., 2008, Piezoelectric shunt damping for chatter suppression in machining processes, Proceedings of ISMA2008, Leuven, Belgium, isma2008-0296
- 17. Everest F.A., 2001, The Master Handbook of Acoustics, Mc Graw-Hill International Editions, fourth edition, 142-147
- 18. Guyomar D., Badel A., 2006, Nonlinear semi-passive multimodal vibration damping: an efficient probabilistic approach, Journal of Sound and Vibration, 294, 249-268
- 19. Haberman R., 1987, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Prentice Hall Inc., second edition, 257-261
- 20. Hagood N.W., Von Flotow A., 1991, Damping of structural vibrations with piezoelectric materials and passive electrical networks, MIT Journal of Sound and Vibration, 146, 2, 243-268
- 21. Lallart M., Badel A., Guyomar D., Lebrun L., 2005, Non-linear semipassive damping using constant or adaptive voltage source: a stability analysis, ICAST 2005 – 16th International Conference on Adaptive Structures and Technologies, 158-165
- 22. Lefeuvre E., Badel A., Petit L., Richard C., Guyomar D., 2006, Semipassive piezoelectric structural damping by synchronized switching on voltage source, Journal of Intelligent Material Systems and Structures, 17, 653-660
- 23. Lesieutre G.A., 1998, Vibration damping and control using shunted piezoelectric materials, The Shock and Vibration Digest, 30, 3, 187-195
- 24. Park G., Inman D.J., 1999, A uniform model for series RL and parallel RL shunt circuits and power consumption, SPIE Conference Proceedings on Smart Structure and Integrated Systems, Newport Beach, CA, 3668, 797-804
- 25. Petit L., Guyomar D., Richard C., 2002, Piezoelectric damping: a comparison between passive and semipassive switching techniques, Proc. of 4th JFSIMS – Japan-France Seminar on Intelligent materials and Structures, Lyon
- 26. Petit L., Lefeuvre E., Richard C., Guyomar D., 2004, A broadband semi passive piezoelectric technique for structural damping, Proc. of SPIE, 5386, 414-425
- 27. Preumont A., 1997, Vibration Control of Active Structures: An Introduction, Kluwer Academic Publishers
- 28. Richard C., Guyomar D., Audigier D., Bassaler H., 2000, Enhanced semi-passive damping using continuous switching and Isolation, SPIE, 3989, 288-299
- 29. Richard C., Guyomar D., Audigier D., Ching G., 1999, Semi-passive damping using continuous switching of a piezoelectric device, Society of Photo-Optical Instrumentation Engineering (SPIE) Conference Series, 3672, 104-111
- 30. Timoshenko S.P., Woinowsky-Krieger S., 1959, Theory of Plates and Shells, Mc Graw-Hill International Editions, second edition, 4-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM7-0002-0027