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The relation between angular oscillations of vibratory machine bodies –
disturbing the vibratory transport – and the loss of cophasal of driving
vibrators was indicated in this paper. It was shown that the loss of
cophasal running could be caused by periodical collisions of the body
with a material feed. The mathematical model of this phenomenon was
developed. The obtained analytical dependencies, allowing one to assess
disphasing of vibrators and to estimate amplitudes of angular oscillations
of the machine, were verified by comparison with the results obtained by
digital simulation of the system behaviour.
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1. Problem formulation

Several essential processing and transportation processes are realised in the
industry by means of vibratory machines and devices, such as vibrating screens
and conveyers, foundry shake-out grids, vibrating tables for production of
concrete prefabricates as well as vibratory devices for synchronous eliminations
of vibrations.
Correct performance of this type of machines depends on obtaining syn-

chronous, cophasal, angular motion of unbalanced masses constituting the
source of the needed dynamic forces (Lavendel, 1981; Michalczyk and Cieplok,
1999).
As an example, let us discuss the scheme of a vibratory machine of a linear

trajectory of vibrations – Fig. 1, in which the drive constitutes two independent
inertial vibrators set in motion by means of induction motors.
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Fig. 1. Calculation diagram of the two-vibrator vibratory machine

In Figure 1: Mk, Jk – mass and central moment of the body inertia, m, e –
mass and eccentricity of the single vibrator, mn – mass of a material feed,
kx, ky – coefficients of elasticity of the body suspension in directions x and y.

The desirable situation is that both vibrators are counter and cophasal
running generating the resulting force in the direction of working vibrations ζ.
The direction of this force should pass through the machine mass centre, which
ensures lack of excitations (when the system of elastic supports is symmetrical)
for angular oscillations.

Conditions for occurrence of tendency for the desirable synchronous and
cophasal vibrator running can be determined on the basis of the integral cri-
terion formulated by Blekhman (1994), Blekhman and Yaroshevich(2004)

D(ϕ1 −ϕ2, ϕ1 −ϕ3, . . . , ϕ1 −ϕn) =
1
T

[

T
∫

0

(E − V ) dt−
T
∫

0

(Ew − Vw) dt
]

= min

(1.1)

According to this criterion, the set of phase angles is stable around values
∆ϕ12,∆ϕ13, . . . ,∆ϕ1n, if the function D, determined by Equation (1.1) for
these values, acquires the local minimum, where:

ϕ1, ϕ2, . . . , ϕn – angles of rotation of individual vibrators versus their
initial positions,

T – period of forced vibrations, T = 2π/ω,
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E – kinetic energy of the machine body with rotor masses con-
centrated in the pivoting point,

V – potential energy of the support system of the machine body,
Ew, Vw – kinetic and potential energy of constrains between vibra-

tors, respectively.

For machines operating in a far-over-resonant mode, for which influence
of elastic forces in the suspension can be neglected and which corresponds to
the scheme presented in Fig. 1, the above given condition leads to (Lavendel,
1981)

D > 0 (1.2)

However, the above criterion does not determine occurrence and precision
of synchronisation in the case when counter-acting factors exist. The range
of allowable disphasing angles of vibrators – for various types of vibratory
machines given in Lavendel (1981) paper – indicates the importance of vibrator
dissynchronisation for the working process:

∆ϕ ¬















3◦ − 5◦ for vibrating screens

5◦ − 12◦ for feeders

12◦ − 16◦ for vibratory conveyers.

The thesis that one of the factors disturbing synchronisation of drives is
the influence of instantaneous forces originated from colliding of the material
feed with the machine will be stated and verified in the paper. The depen-
dences between the material feed mass and the work cycle character and the
disphasing angle of vibrators causing angular oscillations of the body being
responsible for irregular transportation of materials along the machine body
will be also determined.

2. Analysis of influence of collisions with the material feed on

cophasal running of vibrators

Analysis of undisturbed running of vibrators will be performed by means of
an averaging method. It allows one to write equations of motion of the ma-
chine body, shown in Fig. 1, separating the ”quickly” and ”slowly” variable
phenomena. Thus, assuming for synchronous running the equality of angular
velocities of both vibrators ϕ̇1 = ϕ̇2 and their ”slow” variation (ω ≈ const ),
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we can write approximate equations of motion of the body in between the
collisions with the material feed in the absolute system ξ, η in the form

Mξ̈ + kξξ = meω2(sinϕ1 + sinϕ2)

Mη̈ + kηη = meω2(cosϕ2 − cosϕ1) (2.1)

Jα̈+ kyl2α = meω2r(sinϕ2 − sinϕ1) +meω2R(cosϕ1 − cosϕ2)

where
ξ, η – absolute coordinates determining the position of the body

mass centre,
α – angle of rotation of the machine body,
M – mass of a vibrating part of the machine, M =Mk + 2m,
J – central moment of inertia of the machine with unbalanced

masses brought to the axis of rotation of the vibrators,
kξ, kη – coefficient of elasticity in direction ξ and η, respectively, and

kξ = kx cos
2 β + ky sin2 β kη = ky cos2 β + kx sin2 β

the remaining markings are given in Fig. 1.
Denoting ϕ1 − ϕ2 = ∆ϕ = const and assuming ∆ϕ ≪ 1 and ϕ2 = ωt,

ω = const , Equations (2.1) can be presented in the approximated form

Mξ̈ + kξξ = 2meω2 sin
(

ωt+
∆ϕ

2

)

Mη̈ + kηη = meω2∆ϕ sin(ωt)

(2.2)
Jα̈+ kyl2α = −meω2D∆ϕ sin(ωt+ γ)

where tan γ = r/R (Fig. 1).
Particular integrals of the above equations, determining the steady state,

are of the following form

ξ(t) =
2meω2

kξ −Mω2
sin
(

ωt+
∆ϕ

2

)

η(t) =
−meω2∆ϕ
Mω2 − kη

sin(ωt)

(2.3)

α(t) =
meω2D∆ϕ

Jω2 − kyl2
sin(ωt+ γ)

Let us also determine the second time derivatives in stationary motion –
for those coordinates

ξ̈(t) =
2meω4

Mω2 − kξ
sin
(

ωt+
∆ϕ

2

)

η̈(t) =
meω4∆ϕ

Mω2 − kη
sin(ωt)

(2.4)

α̈(t) =
−meω4D∆ϕ
Jω2 − kyl2

sin(ωt+ γ)
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Dynamic equations analysed up to the present were describing body vibra-
tions on the assumption that the angular motion of vibrators can be considered
as uniform for the steady state. This assumption is equivalent to disregarding
the influence of body vibrations on vibrators running. Presently, we will deve-
lop equations of motion of vibrators taking into consideration those couplings,
it means in a non-inertial coordinate system related to the machine body per-
forming vibrations described above.
Applying moments from the inertial forces resulting from vibration of their

axis to vibrators, we obtain equations of angular motion in the form

J0ϕ̈1 =Mz1 −meξ̈1 cosϕ1 −meη̈1 sinϕ1
(2.5)

J0ϕ̈2 =Mz2 −meξ̈2 cosϕ2 +meη̈2 sinϕ2
where
Mz1,Mz2 – external moments (difference of the driving moment

and the moment of friction),
J0 – inertial moment of the vibrator versus its axis of rota-

tion.

Let us mark the vibratory moments Mwi, i = 1, 2, as expressions
Mw1 = −me(ξ̈1 cosϕ1 + η̈1 sinϕ1)

(2.6)
Mw2 = −me(ξ̈2 cosϕ2 − η̈2 sinϕ2)

On the basis of the previously determined solutions of the body motion (not
taking into account any influences of vibratory moments on the vibrators run-
ning) we will determine components of accelerations of axes of both vibrators,
disregarding centripetal accelerations as being small as compared with the
remaining ones

ξ̈1 = ξ̈ − α̈D sin γ η̈1 = η̈ − α̈D cos γ

ξ̈2 = ξ̈ + α̈D sin γ η̈2 = η̈ − α̈D cos γ
(2.7)

Taking into consideration in the above presented expresions Equations
(2.4) and substituting them into (2.6) we will obtain the following equations
to the vibratory moments

Mw1 = −m2e2ω4
[ 2
Mω2 − kξ

sin
(

ωt+
∆ϕ

2

)

cos(ωt+∆ϕ) +

+
D2∆ϕ sin γ
Jω2 − kyl2

sin(ωt+ γ) cos(ωt+∆ϕ) +

+
∆ϕ

Mω2 − kη
sin(ωt) sin(ωt+∆ϕ) +

D2∆ϕ cos γ
Jω2 − kyl2

sin(ωt+ γ) sin(ωt+∆ϕ)
]
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Mw2 = −m2e2ω4
[ 2
Mω2 − kξ

sin
(

ωt+
∆ϕ

2

)

cos(ωt) + (2.8)

−D
2∆ϕ sin γ
Jω2 − kyl2

sin(ωt+ γ) cos(ωt) +

− ∆ϕ

Mω2 − kη
sin2(ωt)− D

2∆ϕ cos γ
Jω2 − kyl2

sin(ωt+ γ) sin(ωt)
]

We will calculate now the value, averaged for the period T = 2π/ω, of the
vibratory moment acting on vibrator No. 1, applying the assumption ∆ϕ≪ 1

Mw1av =
1
T

T
∫

0

Mw1(t) dt =

= −m2e2ω4 ω
2π

[ 2
Mω2 − kξ

2π/ω
∫

0

sin
(

ωt+
∆ϕ

2

)

cos(ωt+∆ϕ) dt+

+
D2∆ϕ sin γ
Jω2 − kyl2

2π/ω
∫

0

sin(ωt+ γ) cos(ωt+∆ϕ) dt+

+
∆ϕ

Mω2 − kη

2π/ω
∫

0

sin(ωt) sin(ωt+∆ϕ) dt+

+
D2∆ϕ cos γ
Jω2 − kyl2

2π/ω
∫

0

sin(ωt+ γ) sin(ωt+∆ϕ) dt
]

= (2.9)

=
−m2e2ω4
2

[ 2
Mω2 − kξ

sin
(

−∆ϕ
2

)

+
D2∆ϕ sin γ
Jω2 − kyl2

sin(γ −∆ϕ) +

+
∆ϕ

Mω2 − kη
cos(∆ϕ) +

D2∆ϕ cos γ
Jω2 − kyl2

cos(γ −∆ϕ)
]

=

=
−m2e2ω4
2

[ −∆ϕ
Mω2 − kξ

+
D2∆ϕ sin γ
Jω2 − kyl2

(sin γ −∆ϕ cos γ) +

+
∆ϕ

Mω2 − kη
+
D2∆ϕ cos γ
Jω2 − kyl2

(cos γ +∆ϕ sin γ)
]

Disregarding terms containing (∆ϕ)2, we will finally obtain

Mw1av =
−m2e2ω4
2

( D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

)

∆ϕ (2.10)
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In a similar fashion, calculating the averaged within the period T = 2π/ω
value of the vibratory moment for vibrator No. 2, we will obtain

Mw2av =
1
T

T
∫

0

Mw2(t) dt =

= −m2e2ω4 ω
2π

[ 2
Mω2 − kξ

2π/ω
∫

0

sin
(

ωt+
∆ϕ

2

)

cos(ωt) dt+

−D
2∆ϕ sin γ
Jω2 − kyl2

2π/ω
∫

0

sin(ωt + γ) cos(ωt) dt + (2.11)

− ∆ϕ

Mω2 − kη

2π/ω
∫

0

sin2(ωt) dt− D
2∆ϕ cos γ
Jω2 − kyl2

2π/ω
∫

0

sin(ωt+ γ) sin(ωt) dt
]

=

=
−m2e2ω4
2

[ 2
Mω2 − kξ

sin
(∆ϕ

2

)

− D
2∆ϕ sin γ
Jω2 − kyl2

sin γ − ∆ϕ

Mω2 − kη
+

−D
2∆ϕ cos γ
Jω2 − kyl2

cos γ
]

=
m2e2ω4

2

( D2

Jω2−kyl2
+

1
Mω2−kη

− 1
Mω2−kξ

)

∆ϕ

As it can be seen, the values of both moments are equal while their direc-
tions reverse. Thus, their difference equals

∆Mw =Mw2av −Mw1av =
(2.12)

= m2e2ω4
( D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

)

∆ϕ

The above expression constitutes the measure of the ability of the sys-
tem to generate the synchronising moment, when due to a certain reason the
system with natural tendency for synchronous cophasal running operates dis-
synchronised by an angle ∆ϕ.
Let us now consider the influence of periodical collisions with the feed

material on vibrators running.
After satisfying certain, given below, limitations for the machine motion,

the feed material performs periodical motion. The period of this motion equals
the vibration period of the machine. Typical motion of the system is shown in
Fig. 2.
It is being proven, in the theory of motion of a material point on a plate

vibrating with a harmonic translatory motion, that the time instant of the



162 J. Michalczyk, P. Czubak

Fig. 2. Feed and machine body motion; yn, ym are vertical displacements of the feed
and the body, respectively

feed material falling on the machine body t3 is a function of a dimensionless
parameter kp called the coefficient of throw (Czubak and Michalczyk, 2001;
Michalczyk, 1995).
This parameter, determining the ratio of the perpendicular component

of the machine body vibration accelerations to the acceleration of gravity is
expressed as follows

kp =
Aω2 sin β
g

(2.13)

where
A – vibration amplitude along the ξ axis,
g – acceleration of gravity,
β – inclination angle of body vibrations versus the horizontal line,

Fig. 1.

Since for m≪M the disturbances of machine motion caused by collisions
with the feed are quite small, it is allowed to use the equation for the time of
falling t3

t3 =
1
ω
arcsin

( 1
kp

)

+
2π
ω
n (2.14)

where the first component determines the time t2 of the feed material detach-
ment from the body, the second component – the time of a free flight, while n
is the root of the equation developed by A. Czubak (Czubak and Michalczyk,
2001)

kp =

√

[cos(2πn) + 2πn2 − 1
2πn− sin(2πn)

]2

+ 1 (2.15)

The time t3 is counted versus the initial moment t = 0 assumed in the instant
when the machine body achieves its maximum velocity ξ̇max. This description
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is correct for one-stroke motion (which means that the flight is not longer than
for 1 vibration period of the machine), which occurs for 1 < kp ¬ 3.3.
The initial instant t=0, for accurately synchronised vibrators, occurs for

ϕ1 = ϕ2 = π, which means that the collision takes place when those angles
are: ϕ1(t3) = ϕ2(t3) = ωt3 + π = ϕ0.
Thus, the angle ϕ0 determining the position of vibrators at the moment

of collision with the material feed is related to the basic motion parameter of
the machine: kp.
Presently, we will determine the value of the force impulse of the colli-

sion. We can take advantage of the fact that the reverse impulse maintains
periodicity of material feed motion of the mass mn remaining in the gravity
field.
Thus

t3+∆t
∫

t3

P (t) dt = −mngT (2.16)

Let us divide both terms of the above equation by the body mass M

t3+∆t
∫

t3

P (t)
M
dt =

−mngT
M

(2.17)

On this basis, we will determine the integral from the body vertical ac-
celeration during the collision time within the interval t3 ¬ t ¬ t3 + ∆t as
follows

t3+∆t
∫

t3

ÿ(t) dt =
−mn
M
gT (2.18)

The applied hereby assumptions require some comments:

• The impulse of the horizontal force was disregarded. Such a procedure
is allowed for the stationary motion at the horizontal positioning of the
trough, since in that case the material feed does not change its hori-
zontal velocity from period to period, which proves that this impulse is
(approximatelly) equal to zero.

• An increased pressure of supporting springs (due to carrying material
feed) on the body was also omitted. For over-resonance machines, the so-
called ”softly” supported ones, this pressure is not significantly changing
due to the body working vibrations. This allows one to consider the
acceleration in the upward direction as a constant one. This type of the
body acceleration is the source of a constant transportation force, in
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equations of vibrators motion in the non-inertial system. Such a force
is neither the source of any constant driving moment nor a moment of
resistance.

• In the case kp < 3.3, the collision impulse in the moment of time t3 does
not counterbalance the force of gravity acting on the material feed for
the period T , since its free flight is shorter. However, directly after the
collision a short-lasting phase of a common flight occurs, during which
the contact force impulse complements the collision impulse to a value
of mngT .

• It was assumed that the restitution coefficient at the material feed col-
lision with the body R ∼= 0, which corresponds to the case of a loose
material feed.

In order to be able to use Equations (2.6) for determining the vibratory
moment originated as a result of the body collision with the material feed, the
components along the axis ξ and η as well as accelerations ÿ(t), common for
both vibrators, should be determined first

ξ̈(t) = ÿ(t) sin β η̈(t) = ÿ(t) cos β (2.19)

Then

Mw1 = −me[ÿ(t) sin β cosϕ1 + ÿ(t) cos β sinϕ1] =
= −me[sin β cosϕ1 + cos β sinϕ1]ÿ(t)

(2.20)
Mw2 = −me[ÿ(t) sin β cosϕ2 − ÿ(t) cos β sinϕ2] =
= −me[sin β cosϕ2 − cos β sinϕ2]ÿ(t)

We can calculate the value of the vibratory moment averaged for the vibration
period originated from the collision occurring at ϕ1 = ϕ2 = ϕ0 and of duration
∆t→ 0

Mw1av =
1
T

T
∫

0

Mw1(t) dt =
1
T

[

−me(sin β cosϕ0 + cosβ sinϕ0)
T
∫

0

ÿ(t) dt
]

=

= −me
T
(sin β cosϕ0 + cos β sinϕ0)

−mn
M
gT = (2.21)

=
memng

M
(sin β cosϕ0 + cos β sinϕ0)

Analogously, for vibrator No. 2 we can obtain

Mw2av =
1
T

T
∫

0

Mw2(t) dt =
memng

M
(sin β cosϕ0 − cos β sinϕ0) (2.22)
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The fact that the integral of the collision force for the vibration period T
is equivalent to the integral for the period from t3 to t3 + ∆t, since behind
this range the collision force equals zero, was utilised. We will calculate the
difference of these moments

∆Mw =Mw2av −Mw1av = −
2memng
M

cosβ sinϕ0 (2.23)

As can be seen from Equation (2.23) depending on angle ϕ0, the vibratory
moment load originated from collisions with the material feed can be higher
for one of the vibrators. For example, for sinϕ0 > 0, when the feed falls on
the body being below the state of static equilibrium, the collision constitutes
a higher load for vibrator No. 2. In order to maintain equality of the average
angular velocity, the dissynchronisation of vibrators (of the type analysed pre-
viously) must occur. Vibrator No. 1 has to run with a lead ∆ϕ as compared
to vibrator No. 2, which causes diversification of vibratory moments origina-
ted by vibrations of axes in the opposite direction than those originated from
collisions with the material feed. Thus, equating modules of Equations (2.12)
and (2.23), it is possible to determine the disphasing angle ∆ϕ of vibrators
and then – on the basis of (2.3)3 – the time history of body oscillations re-
sulting from collisions with a material feed. It should be emphasised, that in
consideration of the equality of the average angular velocity of both vibrators,
the static characteristic inclination of the driving motors (which shapes the
cumulative value of the power input) does not participate in transmission of
an increased power into the more loaded vibrator.

The form of Equation (2.23) indicates the possibility of equalisation of
loads of vibrators originated from collisions with the material feed and thus
avoiding dissynchronisations of vibrators and angular oscillations of the body.
To this end, it is enough to assure that sinϕ0 = 0 at the moment when the
material feed falls on the body. For a single-stroke motion this happens when
t3 = π/ω or t3 = 2π/ω, i.e. when the collision occurs at the moment when the
body passes through the balance point.

It can be stated, on the basis of Equations (2.14) and (2.15), that such a
case occurs for the coefficient of throw: kp = 1.14 and kp = 2.97.

Since the value of kp = 1.14 is most often not sufficient for an effective tech-
nological process, the assumption of kp = 2.97 is recommended for avoiding
body oscillations which cause irregular distribution of vibration amplitudes
along the body.
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3. Simulation investigations

Simplifying assumptions adopted in the given above analysis indicate use-
fulness of the verification of the obtained equations by means of computer
simulation of the system motion.
The model of the system presented in Fig. 3 was used for the numerical

simulation.

Fig. 3. Model of the feeder together with the material feed

The model consists of: two inertial vibrators of an independent induction
drive (described by static characteristics), the machine body performing plane
motion and supported by a system of vertical coil springs and five four-layer
models of the loose material feed (Czubak and Michalczyk, 2001; Michalczyk
and Cieplok, 2006) arranged in different points of the machine working surface.
The effect of the gravity force on angular motion of the vibrators is taken into
account in this model.
The mathematical model of such a system consists of matrix equation (3.1)

describing the machine motion, equations (3.6) concerning electromagnetic
moments of driving motors, equations (3.5) determining motions of successive
layers of the material feed as well as Equations (3.3) and (3.4) describing nor-
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mal and tangent interactions in between the material feed layers and between
the material feed and the machine body

Mq̈ = Q (3.1)

where

M =















Mk +m1 +m2 0 m1h1 +m2h2 m14 m15
0 Mk +m1 +m2 −m1a1 −m2a2 m24 m25

m1h1 +m2h2 −m1l1 −m2l2 m33 m34 m35
m41 m42 m43 J01 0
m51 m52 m53 0 J02















q̈ = [ẍ, ÿ, α̈, ϕ̈1, ϕ̈2]⊤ (3.2)

Q = [Q1, Q2, Q3, Q4, Q5]⊤

where

m14 = m41 = m1e1 cos(β + ϕ1)

m15 = m51 = m2e2 cos(ϕ2 − β)
m24 = m42 = m1e1 sin(β + ϕ1)

m25 = m52 = −m2e2 sin(ϕ2 − β)
m33 = m2h22 +m2l

2
2 +m1h

2
1 +m1l

2
1 + Jk

m34 = m43 = m1h1e1 cos(β + ϕ1)−m1l1e1 sin(β + ϕ1)
m35 = m53 = m2h2e2 cos(ϕ2 − β) +m2l2e2 sin(ϕ2 − β)
Q1 = −m2e2ϕ̇22 sin(ϕ2 − β)−m1e1ϕ̇21 sin(β + ϕ1)− kx(x+Hα) +
−bx(ẋ+Hα̇)− T101 − T102 − T103 − T104 − T105

Q2 = m2e2ϕ̇22 sin(ϕ2 − β) +m1e1ϕ̇21 cos(β + ϕ1)−
1
2
ky(y + l1α) +

−1
2
ky(y − l2α) −

1
2
by(ẏ + l1α̇)−

1
2
by(ẏ − l2α̇) +

−F101 − F102 − F103 − F104 − F105
Q3 = −m1h1e1ϕ̇21 sin(β + ϕ1)−m1l1e1ϕ21 cos(β + ϕ1) +
−m2h2e2ϕ̇22 sin(ϕ2 − β) +m2l2e2ϕ̇22 cos(ϕ2 − β)− kxH2α− kxHx+

−bxHẋ− bxH2α̇−
1
2
ky(y + lα)l +

1
2
ky(y − lα)l −

1
2
by(ẏ + lα̇)l +

+
1
2
by(ẏ − lα̇)l + (T101 + T102 + T103 + T104 + T105)Hn + F1012d+

+F102d− F104d− F1052d
Q4 =Mel1 − bs1ϕ̇21 sgn (ϕ̇1)−m1ge1 sin(β + ϕ1)
Mel2 − bs2ϕ̇22 sgn (ϕ̇2)−m2ge2 cos(ϕ2 − β)
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and
Fj,j−1,k – normal component of the j-th layer pressure on the j − 1

layer in the k-th column,
Tj,j−j,k – tangent component of the j-th layer pressure on the j − 1

layer in the k-th column,
j – material feed index (j = 0 concerns the machine body),
k – material feed column index
J0ic – central moment of inertia of mi, i = 1, 2

mie
2
i + J0ic = J0i i = 1, 2

It was further assumed that

J01 = J02 = J0

If successive layers of the material feed j and j − 1 (in the given column)
are not in contact, the contact force in the normal direction Fj,j−1,k and in
the tangent direction Tj,j−1,k between these layers equals zero

Fj,j−1,k = 0 Tj,j−1,k = 0 for ηj,k ­ ηj−1,k

Otherwise, the contact force in the normal direction between the layers
j, k and j − 1, k of the material feed occurs (or in the case of the first layer:
between the layer and the body), the model of which (Michalczyk, 2008) is of
the form

Fj,j−1,k = (ηj−1,k−ηj,k)pkH
{

1−1−R
2

2
[1− sgn (ηj−1,k−ηj,k) sgn (η̇j−1,k−η̇j,k)]

}

(3.3)
and the force originated from friction in the tangent direction

Tj,j−1,k = −µFj,j−1,k sgn (ξ̇j,k − ξ̇j−1,k) (3.4)

where R is the restitution coefficient of normal impulses at collision, kH , p –
Hertz-Stajerman constants.
The form of dependence (3.3) was developed in Michalczyk (2008) on the

basis of the Hertz-Stajerman contact forces model modified by taking into
account material damping.
Parameters of the hysteresis loop were assumed in such a way as to have

the ratio of the bodies relative velocity after the collision to their velocity
before the collision equal to R. It means that formula (3.3) ensures that this
ratio is equal to the assumed restitution coefficient.
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Equations of motion of individual layers in the directions ξ and η, with
taking into consideration the influence of the conveyer on the lower layers of
the material feed are in the following form

mnj,kξ̈ = Tj,j−1,k − Tj+1,j,k
(3.5)

mnj,kη̈ = −mnj,kg + Fj,j−1,k − Fj+1,j,k

Meli – electromagnetic moment generated by the i-th motor assumed in
the form corresponding to the static characteristic of the motor

Meli =
2Mut(ωss − ϕ̇i1)(ωss − ωut)
(ωss − ωut)2 + (ωss − ϕ̇i)2

i = 1, 2 (3.6)

where: Mut – stalling torque of the driving motors, ωss – their synchronous
frequency and ωut – stalling frequency.
The simulation was performed for the following parameters: l = 0.5m,

l1 = 1m, l2 = 0.5m, H = 0.0m, h1 = 0.5m, h2 = 1m, bx = by = 400Ns/m,
kx = ky = 150000 N/m, m1 = m2 = 5kg, Mk = 120 kg, J01 = J02 = J0 =
variable, Jk = 25 kgm2, e1 = e2 = variable e(kp)m, D = 1.118m, mut =
50Nm, ωss = 50π rad/s, ωut = 15.9 · 2π rad/s, bs1 = bs2 = 0.00009 Nms2.
The simulation model developed for the verification of analytical solutions

takes into consideration not only factors included in the analytical solutions
but also other phenomena of essential meaning for the process of vibrators
synchronisation, such as e.g. force of gravity. In addition, no limitations for
disphasing angles were introduced and the vibratory moments were treated as
variables (not averaged) within the period of machine vibrations.

4. Conclusions

In order to verify the analytical solution, the amplitudes of angular oscillations
of the body Aα, being the result of vibrators disphasing due to collisions with
the material feed were determined on the basis of equations (2.12), (2.23)
and (2.3)3. The obtained values were compared with the simulation results.
The calculations and simulations were performed for various values of the
coefficient of throw kp from the range [1,

√
π2 + 1] and for two masses of the

feed: mn = 20 kg and 60 kg. The results obtained by analytical and simulation
methods are presented in Figs. 4, 5, 6 and 7.



170 J. Michalczyk, P. Czubak

Fig. 4. Angular amplitudes of the body Aα versus coefficient of throw kp for the
material feed in a lump form of mass of 20 kg, (a) theoretical curve, (b) digital

simulation

Fig. 5. Angular amplitudes of the body Aα versus coefficient of throw kp for the
material feed in a lump form of mass of 60 kg, (a) theoretical curve, (b) digital

simulation

Fig. 6. Angular amplitudes of the body Aα versus coefficient of throw kp for the
loose material feed of mass of 20 kg, (a) theoretical curve, (b) digital simulation
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Fig. 7. Angular amplitudes of the body Aα versus coefficient of throw kp for the
loose material feed of mass of 60 kg, (a) theoretical curve, (b) digital simulation

The comparison of results obtained analytically and by means of digital
simulation leads to the following conclusions:

• The mathematical model, developed in this paper, properly describes
the influence of a lumped material feed on diversification of phase angles
of the vibrators and the resulting angular oscillations of the body for
the coefficient of throw within the range kp = 1.5 to 3.3, corresponding
to variability of this parameter in industrial conditions. It allows one
to predict, with high accuracy, the maximum value of body angular
oscillations and its position (kp ≈ 1.75). It also indicates the existence
of the amplitude minimum for kp ≈ 3.0.

However, the value of this minimum is not zero, as indicates the theory,
but approximately 20% of the peak value.

• In the case of a loose material feed, the analytical dependencies allow
prediction, satisfactory for the practice, of the maximum body angular
oscillation and its position.

However, in this case, the minimum of body oscillations does not occur
for kp ≈ 3.0 as predicts the theory, but near kp = 2.7, and its value
varies by 20% (for a material feed constituting app. 15% of the body
mass) up to 47% (for a material feed constituting app. 46% of the body
mass) of the peak value.
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Wpływ zderzeń z nadawą na współfazowość synchronizacji wzajemnej

wibratorów napędowych maszyn wibracyjnych

Streszczenie

W pracy wskazano na istnienie związku poomiędzy zakłócającymi przebieg trans-
portu wibracyjnego wahaniami korpusów maszyn wibracyjnych a utratą współfazo-
wości wibratorów napędowych. Wykazano, że utrata współfazowości spowodowana
być może przez okresowe zderzenia korpusu z nadawą i zbudowano model matema-
tyczny tego zjawiska. Uzyskane zależności analityczne, pozwalające na oszacowanie
rozfazowania wibratorów i ocenę amplitudy wahań kątowych maszyny, zweryfikowano
przez porównanie z rezultatami otrzymanymi na drodze symulacji cyfrowej zachowa-
nia układu.
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