PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of a gas turbine used in a high temperature membrane air separation unit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article computational algorithm and exemplary results for a model of an air separation unit (ASU) with “four end” high temperature membrane (HTM) were presented. First, the software environment for building of a "four end" membrane separator model was chosen. Then, a model of an air separation unit was created and preliminary calculations were made on that model. The air separation unit structure consists of a “four end” membrane, heat exchanger, electrical generator, air compressor and expander. Parameter that determines all flows in the ASU model is the oxygen mass flow rate. This mass flow rate is approximately the same as oxygen mass flow rate feeding oxy boiler working in a 460 MW power plant. The most important step of this paper was the integration of a model of pulverized fuel boiler in the oxy-combustion technology and the air separation unit model by sending flue gas from boiler to ASU. The characteristics of ASU such as power and efficiency as a function of the oxygen recovery rate were made. Maximal value of oxygen recovery rate was calculated. The difference between optimal compressor pressure ratio of the autonomic gas turbine and of the air separation unit are presented in this paper.
Rocznik
Strony
128--133
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery 44-100 Gliwice, ul. Konarskiego 18, janusz.kotowicz@polsl.pl
Bibliografia
  • 1. CHMIELNIAK T.: The role of various technologies in achieving emissions objectives in the perspective of the years up to 2050. Rynek Energii, 2011, 1 (92), 3–9.
  • 2. CHMIELNIAK T., ŁUKOWICZ H., KOCHANIEWICZ A.: Trends of modern power units efficiency growth. Rynek Energii, 2008, 6 (79), 14–20.
  • 3. KOTOWICZ J., JANUSZ-SZYMAŃSKA K.: Influence of CO2 separation on the efficiency of the supercritical coal fired power plant. Rynek Energii, 2011, 2 (93), 8–12.
  • 4. LISZKA M., ZIĘBIK A.: Coal – fired oxy – fuel power unit – Process and system analysis. Energy, 35 (2010), 943–951.
  • 5. TOFTEGAARD M.B., BRIX J., JENSEN P.A., GLARBORG P., JENSEN A.D.: Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 2010, 36, 581–625.
  • 6. DILLON D.J., WHITE V., ALLAM R.J., WALL R.A., GIBBINS J.: Oxy-combustion Process for CO2 Capture from Power Plant. Mitsui Babcock Energy Limited, 2005.
  • 7. BUHRE B.J.P., ELLIOTT L.K., SHENG C.D., GUPTA R.P., WALL T.F.: Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 2005, 31, 283–307.
  • 8. PFAFF I., KATHER A.: Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia, 1 (2009), 495–502.
  • 9. STADLER H. et al.: Oxyfuel coal combustion by efficient integration of oxygen transport membranes. International Journal of Greenhouse Gas Control, 5 (2011), 7–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0032-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.