Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Maksymalizacja siły hamowania za pomocą modelu z logiką rozmytą
Języki publikacji
Abstrakty
This paper shows the process of braking force realization by air brakes with brake shoes accompanied by a suitable mechanical model. The complexity of adhesion nature as a physical phenomenon as well as the limited factors on which the braking force value depends are pointed out. According to this, the model of braking force realization based on the fuzzy set theory is explained. The procedure of fuzzy controller projecting with a task to regulate the value of kidding and by that the value of braking torque through the air pressure in the braking cylinder by maximizing the braking force that can be realized according to adhesion conditions is described. The testing of the optimization model under concrete adhesion conditions of the wheels on the rails is done at the end of the paper.
W artykule opisano proces generowania siły hamującej w pneumatycznych hamulcach szczękowych za pomocą odpowiedniego modelu mechanicznego. Szczególny nacisk położono na złożoność natury adhezji jako zjawiska fizycznego oraz ograniczoność czynników, od których zależy wartość siły hamującej. W tym kontekście zbudowano model oparty na logice rozmytej jako teoretyczne narzędzie do określania siły hamowania. Opisano procedurę projektowania sterownika rozmytego, którego zadaniem jest kontrola wartości poślizgu poprzez dobór momentu hamującego wynikającego z ciśnienia w zbiorniku układu pneumatycznego oraz aktualnych warunków adhezji. Na zakończenie przeprowadzono test modelu optymalizującego siłę hamowania dla konkretnych warunków adhezji pomiędzy szyną, a kołem poruszającego się po niej pojazdu.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1037--1048
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
Bibliografia
- 1. Allota B., Malvezzi M., Toni P., 2001, Adhesion models for wheel/rail contact in railways, Proc. of the 2nd World Tribology Congress, Vienna
- 2. Arias-Cuevas O., Li Z., 2008, Low adhesion in the contact between wheel and rail, CROW Infradagen, Delft University Publications
- 3. Bureika G., 2008, A mathematical model of train continuous motion uphill, Transport, 23, 2, 135-137
- 4. Bureika G., Mikali¯unas ˇS., 2008, Research on the compatibility of the calculation methods of rolling stock brakes, Transport, 23, 4, 351-355
- 5. Barney D., Haley D., Nikandros G., 2001, Calculating train braking distance, Proc. of the 6th Australian Workshop on Industrial Experience with Safety Critical Systems and Software(SCS 2001), Brisbane, 3, 23-30
- 6. Cheok D.A., Shiomi S., 1998, A fuzzy logic based anti-skid control system for railway applications, Proc. of the 2nd International Conference on Knowledge-Based Intelligent Electronic Systems, 195-201
- 7. Cheok A.D., Shiomi S., 2000, Combined heuristic knowledge and limited measurement based fuzzy logic antiskid control for railway applications, IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 30, 4, 557-568
- 8. Department for Transport, 2007, Rewiew of Adhesion-Related Incidents During Autumn 2005, Report 25 (Part 3), Rail Accident Investigation Branch, Derby [Available from Internet: http://www.railwaysarchive.co.uk/documents/RAIBAdhesion2005.pdf]
- 9. Dinić D., 1986, Train Traction, Beograd: Zavod za novinsko-izdavaˇcku i propagandnu delatnost JˇZ
- 10. Dukkipati V.R., 2000, Vehicle dynamics, CRC Press
- 11. Ginsberg J., 2008, Engineering dynamics, Cambridge University Press
- 12. Hasegawa I., Uchida S., 1999, Braking systems, Japan Railway and Transport Review, 20, 52-59
- 13. Jang R.S.-J., Sun T.-C., 1995, Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83, 3, 378-405
- 14. Lata M., 2008, The modern wheelset drive system and possibilities of modelling the torsion dynamics, Transport, 23, 2 172-181
- 15. Lee H., Kim G., Park S., 2007, A study on optimal braking control using adhesion coefficient, Proc. of 7th International Conference on Power Electronics, 343-346
- 16. Liudvinaviˇcius L., Lingaitis P.L., 2007, Electrodynamic braking in high speed rail transport, Transport, 22, 3, 178-186
- 17. Ohishi K., Ogawa Y., Miyashita I., Yasukawa S., 2000, Anti-slip re-adhesion control of electric motor coach based on force control using disturbance observer, Proc. of IAS Annual Meeting (IEE Industry Application Society), 2, 1001-1007
- 18. Reaz I.B.M., Rahman S.M., 2002, FGPA realization of fuzzy based subway train braking system, Proc. of the 2nd International Conference on Electrical and Computer Engineering –ICECE, Dhaka, 98-101
- 19. Sivinandam N.S., Sumathi S., Deepa N.S., 2007, Introduction to Fuzzy Logic Using MATLAB, Springer-Verlag, Berlin Heidelberg
- 20. Sugeno M., Tanaka K., 1991, Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Sets and Systems, 42, 3, 315-334
- 21. ˇSubara N., 2006, Rail vehicle braking systems, Beograd: ˇZELNID
- 22. Vasic G., Franklin F.J., Kapoor A., 2003, New Rail Materials and Coatings, Report RRUK/A2/1, University of Sheffield [Available from Internet: http://portal.railresearch.org.uk/RRUK/Shared%20Documents/rssba2a.pdf]
- 23. Yamazaki H., Nagai M., Kamada T., 2004, A study of adhesion force model for wheel slip prevention control, JSME International Journal Series C, 47, 2, 496-501
- 24. Zadeh A.L., 1965, Fuzzy sets, Information and Control, 8, 3, 338-353
- 25. Zadeh A.L., 1973, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics-Part C:Applications and Reviews, 3, 1, 28-44
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0030-0014