PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Universal weighting function in modeling transient cavitating pipe flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Uniwersalna funkcja wagi w modelowaniu niestacjonarnych przepływów z kawitacją występujących w przewodach ciśnieniowych
Języki publikacji
EN
Abstrakty
EN
This work concerns modeling of time-varying resistance during transient cavitating liquid pipe flow. The wall shear stress is presented in the way introduced by Zielke as the integral convolution of liquid local velocity changes and a weighting function. A new procedure for determination, so-called, a universal laminar-turbulent weighting function, which combines functions of Zielke and Vardy and Brown or Zielke and Zarzycki, is presented. Based on these weighting functions, the method of simulation transients in the pressure lines in a wide range of Reynolds numbers is presented. It eliminates numerical problems associated with the change of laminar flow into turbulent and vice versa. An example application of this method for simulation of water hammer is presented. The calculation results are compared against experiments presented by Bergant and Simpson, and good agreement is found.
PL
Praca dotyczy modelowania zmiennych w czasie oporów podczas nieustalonego przepływu cieczy w przewodach ciśnieniowych. Naprężenie styczne na ściance przewodu przedstawione zostało w klasyczny sposób (wg. Zielke) jako całka splotowa z przyśpieszenia cieczy i pewnej funkcji wagowej. Przedstawiono procedury wyznaczania dwóch uniwersalnych funkcji wagowych laminarnoturbulentnych (wg. Zielke i Vardy-Browna oraz wg. Zielke i Zarzyckiego).W oparciu o te funkcje przedstawiono metodę modelowania (symulacji) przebiegów przejściowych w przewodach ciśnieniowych w szerokim zakresie liczb Reynoldsa. Eliminuje on problemy natury numerycznej związane z przechodzeniem min. z przepływu laminarnego w turbulentny i odwrotnie. Podano przykład zastosowania opracowanej metody do symulacji uderzenia hydraulicznego. Wyniki obliczeń porównano z wynikami eksperymentalnymi wg. Berganta i Simpsona, otrzymując dobrą zgodność.
Rocznik
Strony
889--902
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • 1. Bergant A., Simpson A.R., 1996, Interesting lessons from column separation experiments, Proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, 19, BHR Group, 83-97
  • 2. Bergant A., Simpson A.R., 1999, Pipeline column separation flow regimes, Journal of Hydraulic Engineering, August, 835-848
  • 3. Bergant A., Vitkovsky J., Simpson A.R., Lambert M., Tijsseling A.S., 2006, Discrete vapour cavity model with efficient and accurate convolution type unsteady friction term, Int. J. Kurokawa, Proceedings 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan, Paper 109 IAHR
  • 4. Brown F.T., 1962, The transient response of fluid lines, Trans. ASME, Journal of Basic Engineering, 84, 547-553
  • 5. Brown F.T., Margolis D.L., Shah R.P., 1969, Small amplitude frequency behaviour of fluid lines with turbulent flow, Trans. ASME, Journal of Basic Engineering, 91, 4, 678-692
  • 6. Brown F.T., Nelson S.E., 1965, Step responses of liquid lines with frequency-dependent effects of viscosity, Trans. ASME, Journal of Basic Engineering, 87, 504-510
  • 7. Brunone B., Golia U.M., Greco M., 1991, Some remarks on the momentum equations for fast transients, Proceedings of the International Meeting on Hydraulic Transients with Column Separation, 9th Round Table, IAHR, Valencia, Spain, 201-209
  • 8. Carstens M.R., Roller J.E., 1959, Boundary-shear stress in unsteady turbulent pipe flow, ASCE Journal of the Hydraulics Division, 85 (HY2), 67-81
  • 9. 9] Dailey J.W., Hankey W.L., Olive R.W., Jordaan J.M., 1956, Resistance coefficient for accelerated and decelerated flows through smooth tubes and orifices, Trans. ASME, Journal of Basic Engineering, 78, July, 1071-1077
  • 10. Ghidaoui M.S., Mansour S., 2002, Efficient treatment of the Vardy-Brown unsteady shear in pipe transients, Journal of Hydraulic Engineering, ASCE January, 102-112
  • 11. Kagawa T., Lee I., Kitagawa A., Takenaka T., 1983, High speed and accurate computing method of frequency-dependent friction in laminar pipe flow for characteristics method, Trans. Jpn. Soc. Mech. Eng., Ser. A, 49, 447, 2638–2644 [in Japanese]
  • 12. Kudźma S., 2005,Modeling and simulation dynamical runs in closed conduits of hydraulics systems using unsteady friction model, PhD Thesis, Szczecin University of Technology [in Polish]
  • 13. Kudźma S., Zarzycki Z., 2005, Application of the efficient numerical method of unsteady friction simulation for investigation of transient flow in hydraulic systems with long line, Scientific Papers of the Department of Applied Mechanics, no 29, XLIV Sympozjon PTMTS Modelowanie w Mechanice, Poland Gliwice, 29, 279-284 [in Polish]
  • 14. Ohmi M, Tateo U., 1976, Pressure and velocity distributions in pulsating turbulent pipe flow (Part I – Theoretical treatments), Bulletin of the JSME, 19, 129, 307-313
  • 15. Rahl F. M., Barlamont J., 1996, Unsteady pipe flow simulations using unsteady friction flow formula, 7th International Conference on Pressure Surges and Transients in Pipeline and Open Channels, BHR Group, Harrogate, UK, 313-322
  • 16. Safwat H.H., Polder J.V.D., 1973, Experimental and analytic data correlation study of water column separation, Journal of Fluids Engineering, March, 91-97
  • 17. Schohl G.A., 1993, Improved approximate method for simulating frequency-dependent friction in transient laminar flow, Journal of Fluids Engineering, Trans. ASME, 115, 420-424
  • 18. Shu J.J., 2003, Modelling vaporous cavitation on fluid transients, Intern. Journal of Pressure Vessels and Piping, 80, 187-195
  • 19. Streeter V.L., Lai C., 1962, Water-hammer analysis including fluid friction, Journal of the Hydraulics Division, 88, HY 3, 79-112
  • 20. Suzuki K., Taketomi T., Sato S., 1991, Improving Zielke’s method of simulating frequencydependent friction in laminar liquid pipe flow, Journal of Fluids Engineering, Trans. ASME, 113, 569-573
  • 21. Trikha A.K., 1975, An efficient method for simulating frequency-dependent friction in transient liquid flow, Journal of Fluids Engineering, Trans. ASME, March, 97-105
  • 22. Urbanowicz K., Zarzycki Z., 2012, New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow, Journal of Theoretical and Applied Mechanics, 50, 2, 487-508
  • 23. Vardy A.E., Brown J.M.B., 1995, Transient turbulent smooth pipe friction, Journal of Hydraulic Research, 33, 435-456
  • 24. Vardy A.E., Brown J.M.B., 2003, Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, 5, 1011-1036
  • 25. Vardy A.E., Brown J.M.B., 2004, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, 233-257
  • 26. Vardy A.E., Hwang K.L., 1991, A characteristics model of transient friction in pipes, Journal of Hydraulic Research, 29, 5, 669-684
  • 27. Vardy A.E., Hwang K.L., Brown J.M.B., 1993, A weighting function model of transient turbulent pipe friction, Journal of Hydraulic Research, 31, 4, 533-548
  • 28. Vitkovsky J.P., Lambert M.F, Simpson A.R., Bergant A., 2000, Advances in unsteady friction modelling in transient pipe flow, Proceedings of the 8th International Conference on Pressure Surges, BHR Group Conf. Series Publ., The Hague, The Netherlands, 471-482
  • 29. Vitkovsky J.P., Stephens M.L., Bergant A., Simpson A.R., Lambert M.F., 2004, Efficient and accurate calculation of Zilke and Vardy-Brown unsteady friction in pipe transients, 9th International Conference on Pressure Surges, Chester, United Kingdom, 405-419
  • 30. Wylie E.B., Streeter V.L., 1993, Fluid Transients in Systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA
  • 31. Zarzycki Z., 1994, A Hydraulic Resistance of Unsteady Fluid Flow in Pipes, Published by Technical University of Szczecin, 516, Szczecin [in Polish]
  • 32. Zarzycki Z., 2000, On weighting function for wall shear stress during unsteady turbulent pipe flow, 8th International Conference on Pressure Surges, BHR Group, The Hague, 529-543
  • 33. Zarzycki Z., Kudźma S., 2004, Simulations of transient turbulent flow in liquid lines using time – dependent frictional losses, The 9th International Conference on Pressure Surges, BHR Group, Chester, UK, 439-455
  • 34. Zielke W., 1966, Frequency dependent friction in transient pipe flow, The University of Michigan, PhD Thesis
  • 35. Zielke W., 1968, Frequency-dependent friction in transient pipe flow, Journal of ASME, 90, March, 109-115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0030-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.