PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Procedura obliczeniowa w analizie dynamiki układu sieci trakcyjnej i pantografu szybkobieżnego pociągu
Języki publikacji
EN
Abstrakty
EN
The quality of the current collection of high-speed trains is dependent on the compatibility of the catenary and pantograph dynamics and on its implications on the contact force. The design and analysis of these systems using proper computational procedures allows capturing all the relevant features of their dynamic behavior. This work proposes an approach to the dynamics of the energy collection system based on the finite elements method, for the catenary, and on multibody dynamics methods, for the pantograph, integrated via a co-simulation procedure. A contact model based on a penalty formulation is selected to represent the pantograph-catenary interaction. The methodology is applied to the study of high speed train operations with multiple pantographs, as this environment constitutes one of the limiting scenarios for the increase of the operation speed.
PL
Sprawność obecnie eksploatowanych pociągów wysokich prędkości zależy od dynamicznej kompatybilności układu pantografów z siecią trakcyjną i wynikającymi siłami kontaktu pomiędzy tymi elementami. Projektowanie i analiza tego układu z wykorzystaniem odpowiednich procedur obliczeniowych pozwala uchwycić najważniejsze cechy dynamiczne obiektu badań. W pracy zaproponowano zastosowanie metody elementów skończonych do analizy dynamiki sieci energetycznej oraz równania ruchu wieloelementowego układu brył sztywnych do opisu zachowania się pantografu. Do tego celu użyto odpowiedniej procedury współsymulacyjnej. Do reprezentacji interakcji pomiędzy siecią a pantografem, wybrano sformułowanie oparte na funkcji kary. Metodologię przetestowano dla przypadku pociągów wysokich prędkości z wieloma pantografami. Ich jakość oraz jakość współpracy z siecią trakcyjną stanowi jeden z czynników ograniczających osiąganie coraz większych prędkości maksymalnych pociągów.
Rocznik
Strony
681--699
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
  • IDMEC – Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa, Portugal, jorge@dem.ist.utl.pt
Bibliografia
  • 1. Ambrósio J., Pombo J., Facchinetti A., Bruni S., Massat J.-P., Dupuis H., 2010, Key parameters for pantograph/catenary numerical models, PantoTRAIN Technical Report D1.1, UNIFE, Brussels, Belgium
  • 2. Ambrósio J., Pombo J., Pereira M., Antunes P., Mósca A., 2012, Recent developments in pantograph-catenary interaction modelling and analysis, International Journal of Railway Technology, 1, 1, 249-278
  • 3. Ambrósio J., Pombo J., Rauter F., Pereira M., 2008, A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation, [In:] Multibody Dynamics, C.L. Bottasso (Ed.), Springer, Dordrecht, the Netherlands
  • 4. Ambrósio J., Rauter F., Pombo J., Pereira M., 2011, A flexible multibody pantograph model for the analysis of the catenary-pantograph contact, [In:] Multibody Dynamics: Computational Methods and Applications, K. Arczewski, W. Blajer, J. Fraczek, M.K. Wojtyra (Eds.), Springer, Dordrecht, The Netherlands, 1-27
  • 5. Ambrósio J., Verissimo P., 2009, Improved bushing models for vehicle dynamics, Multibody System Dynamics, 22, 4, 341-365
  • 6. Bucca G., Collina A., 2009, A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system, Wear, 266, 1/2, 46-59
  • 7. Collina A., Bruni S., 2002, Numerical simulation of pantograph-overhead equipment interaction, Vehicle System Dynamics, 38, 4, 261-291
  • 8. Collina A., Lo Conte A., Carnevale M., 2009, Effect of collector deformable modes in pantograph-catenary dynamic interaction, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223, 1, 1-14
  • 9. Dahlberg T., 2007, Moving force on an axially loaded beam – with application to a railway overhead contact wire, Vehicle System Dynamics, 44, 8, 631-644
  • 10. Djerassi S., 2012, Three-dimensional, one point collision with friction, Multibody System Dynamics, 27, 2, 173-195
  • 11. EN50317 standard, 2012, Railway applications – Current collection systems – Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line, CENELEC European Committee for Electrotechnical Standardization, Brussels, Belgium
  • 12. EN50367 standard, 2006, Railway applications – Current collection systems – Technical criteria for the interaction between pantograph and overhead line, CENELEC European Committee for Electrotechnical Standardization, Brussels, Belgium
  • 13. EUROPAC, 2008, EUROPAC Publishable Final Activity Report, EUROPAC Technical Report, SNCF, Paris, France
  • 14. Facchinetti A., Bruni S., 2012, Hardware-in-the-loop hybrid simulation of pantograph-catenary interaction, Journal of Sound and Vibration, DOI: 10.1016/j.jsv.2012.01.033
  • 15. Flores P., Ambrósio J., Pimenta Claro J., Lankarani H., 2008, Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies, Springer, Dordrecht, The Netherlands
  • 16. Flores P., Machado M., Silva M.T., Martins J.M., 2011, On the continuous contact force models for soft materials in multibody dynamics, Multibody System Dynamics, 25, 3, 357-375
  • 17. Hughes T., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood-Cliffs, New Jersey
  • 18. Ikeda K., 2008, Optimization of overhead contact lines for sinkansen speed increases, JR East Technical Review, 12, 6469
  • 19. Kiessling F., Puschmann R., Schmieder A., 2002, Contact Lines for Electric Railways, John Wiley & Sons Inc., Berlin, Germany
  • 20. Lankarani H., Nikravesh P., 1994, Continuous contact force models for impact analysis in multibody systems, Nonlinear Dynamics, 5, 193-207
  • 21. Lee K., 2011, A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point, Multibody System Dynamics, 26, 4, 425-439
  • 22. Mentel J.P., 2008, Technical developments in superstructure, Communication at Highspeed 2008: 6th World Congress on High Speed Rail, March 17-19, Amsterdam, The Netherlands
  • 23. Newmark N., 1959, A method of computation for structural dynamics, ASCE Journal of the Engineering Mechanics Division, 85, EM 3, 67-94
  • 24. Nikravesh P., 1988, Computer-Aided Analysis of Mechanical Systems, Prentice-Hall, Englewood Cliffs, New Jersey
  • 25. Pereira C., Ramalho A., Ambrósio J., 2011, A critical overview of internal and external cylinder contact force models, Nonlinear Dynamics, 63, 4, 681-697
  • 26. Poetsch G., Evans J., Maisinger R., Kort¨um W., Baldauf W., Veitl A., Wallaschek J., 1997, Pantograph/catenary interaction and control, Vehicle Systems Dynamics, 28, 159-195
  • 27. Pombo J., Ambrósio J., 2003, General spatial curve joint for rail guided vehicles: kinematics and dynamics, Multibody Systems Dynamics, 9, 237-264
  • 28. Pombo J., Ambrósio J., 2012, An alternative method to include track irregularities in railway vehicle dynamic analysis, Nonlinear Dynamics, DOI 10.1007/s11071-011-0212-2, 68, 1/2, 161-176
  • 29. Pombo J., Ambrósio J., Pereira M., Rauter F., Collina A., Facchinetti A., 2009, Influence of the aerodynamic forces on the pantograph-catenary system for high speed trains, Vehicle Systems Dynamics, 47, 11, 1327-1347
  • 30. Pupke F., 2010, Installation of contact wire (CW) for high speed lines – recommendations, Oral presentation at IEEE Meeting, January 25, Houston, Texas
  • 31. Rauter F., Pombo J., Ambrósio J., Chalansonnet J., Bobillot A., Seabra Pereira M., 2007, Contact model for the pantograph-catenary interaction, JSME International Journal of System Design and Dynamics, 1, 3, 447-457
  • 32. Schaub M., Simeon B., 2001, Pantograph-catenary dynamics: an analysis of models and techniques, Mathematical and Computer Modelling of Dynamic Systems: Methods, Tools and Applications in Engineering and Related Sciences, 7, 2, 225-238
  • 33. Seo J.-H., Kim S.-W., Jung I.-H., Park T.-W., Mok J.-Y., Kim Y.-G., Chai J.B., 2006, Dynamic analysis of a pantograph-catenary system using absolute nodal coordinates, Vehicle System Dynamics, 44, 8, 615-630
  • 34. Seo J.-H., Sugiyama H., Shabana A., 2005, Three-dimensional deformation analysis of the multibody pantograph/catenary systems, Nonlinear Dynamics, 42, 199-215
  • 35. Spiryagin M., Simson S., Cole C., Persson I., 2012, Co-simulation of a mechatronic system using Gensys and Simulink, Vehicle System Dynamics, 50, 3, 495-507
  • 36. Stickland M.T., Scanlon T.J., Craighead I.A., Fernandez J., 2003, An investigation into the mechanical damping characteristics of catenary contact wires and their effect on aerodynamic galloping instability, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 217, 2, 63-71
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0029-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.