PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature increase associated with plastic deformation under dynamic compression: application to aluminium alloy AL 6082

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wzrost temperatury wywołany plastycznym odkształceniem przy dynamicznym ściskaniu – analiza stopu aluminium Al 6082
Języki publikacji
EN
Abstrakty
EN
The temperature increase associated with plastic deformation of a material under loading may be measured using several techniques such as infrared thermography (IRT). The present work investigates the temperature increase at different high strain rates and initial test temperatures, using an aluminium alloy Al 6082. A Split Hopkinson Pressure Bar (SHPB) was applied to induce high strain rates to the material and an infrared camera was used to measure the temperature increase. Numerical simulations of dynamic tests were performed to calculate the temperature increase and to gain a better understanding of the process by local measurements. Thus, a detailed finite-elements model was developed to simulate the dynamic compression test. The fraction of plastic work converted into heat was estimated using the Zehnder model. Numerical results in terms of the strain rate and initial temperature effect on the material temperature increase are reported and compared with experiments.
PL
Wzrost temperatury w materiale związany z plastycznym odkształcaniem może być rejestrowany różnymi metodami, w tym m.in. techniką termografii podczerwieni (IRT). Prezentowana praca poświęcona jest badaniom wzrostu temperatury przy różnym tempie odkształceń i temperatury początkowej próbek wykonanych ze stopu aluminium Al 6082. W eksperymentach użyto zmodyfikowanego pręta Hopkinsona do generowania szybko-zmiennych odkształceń w materiale i jednocześnie dokonywano pomiarów temperatury za pomocą kamery termowizyjnej. Przeprowadzono także symulacje numeryczne przebiegu przyrostu temperatury pozwalające na lepsze zrozumienie zachodzących procesów na podstawie lokalnych pomiarowym. W tym celu zbudowano szczegółowy model bazujący na metodzie elementów skończonych, który przeanalizowano pod kątem dynamicznego ściskania. Część pracy odkształcenia plastycznego zamienianego w ciepło oszacowano za pomocą modelu Zehndera. Wyniki obliczeń uwzględniających tempo odkształceń i temperaturę początkową na jej przyrost w badanym materiale zweryfikowano z rezultatami doświadczeń.
Rocznik
Strony
377--398
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • University Carlos III of Madrid, Department of Continuum Mechanics and Structural Analysis, Madrid, Spain, percaste@ing.uc3m.es
Bibliografia
  • 1. Agena A.S.M., 2009, A study of flow characteristics of nanostructured Al6082 alloy produced by ECAP under upsetting test, J. of Mater. Proc Tech., 209, 2, 856-863
  • 2. Aravas N., Kim K.S., Leckie F.A., 1990, On the calculations of the stored energy of cold work, J. Eng. Mater. Technol., 112, 4, 465-470
  • 3. Chrysochoos A., Louche H., 2000, An infrared image processing to analyse the calorific effects accompanying strain localisation, Int. J. Eng. Sci., 38, 1759-1788
  • 4. Dadbakhsh S., Karimi Taheri A., Smith C.W., 2010, Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process, Mater. Sci. and Eng.: A, 527, 18/19, 4758-4766
  • 5. Guduru P.R., Rosakis A.J., Ravichandran G., 2001, Dynamic shear bands: an investigation using high speed optical and infrared diagnostics, Mechanics of Material, 33, 371-402
  • 6. Guzm´an R., Essa Y.E., Mel´endez J., Aranda J., López F., P´erez-Castellanos J.L., 2009, Measurement of temperature increment in compressive quasi-static and dynamic tests using the infrared thermography, Strain, 45, 2, 179-189
  • 7. Hodowany J., Ravichandran G., Rosakis A.J., Rosakis P., 1999, Partition of plastic work into heat and stored energy in metals, Experimental Mechanics, 40, 113-123
  • 8. Jankowiak T., Rusinek A., Lodygowski T., 2011, Validation of the Klepaczko-Malinowski model for friction correction and recommendations on split Hopkinson pressure bar, Finite Elements in Analysis and Design, 47, 10, 1191-1208
  • 9. Kappor R., Nemat-Nasser S., 1998, Determination of temperature rise during high strain rate deformation, Mechanics of Material, 27, 1-12
  • 10. Karlsson and Sorensen, Inc., 2006, Abaqus, v6.4 User’s Manual
  • 11. Klepaczko J.R., Rusinek A., Rodr´ıguez-Mart´ınez J.A., Pecherski R.B, Arias A., 2009, Modeling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems, Mechanics of Material, 41, 599-621
  • 12. Kolsky H., 1949, An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc., B62, 676-699
  • 13. Macdougall D., Harding J., 1998, The measurement of specimen surface temperature in high-speed tension and torsion test, Int. J. of Impact Engin., 21, 6, 473-488
  • 14. Malinowski J.Z., Klepaczko J.R., 1986, A unified analytic and numerical approach to specimen behaviour in the Split-Hopkinson pressure bar, Int. J. Mech. Sci., 28, 6, 381-391
  • 15. Mann T., H¨arkeg°ard G., St¨ark K., 2007, Short fatigue crack growth in aluminium alloy 6082-T6, Int. J. of Fatigue, 29, 8/11, 1820-1826
  • 16. Manping L., Hans J.R., Yingda Y., Jens C.W., 2008, Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing, Mater. Sci. and Eng., A, 483/484, 59-63
  • 17. Manson J.J., Rosakis A.J., Ravichandran, 1994, On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar, Mechanics of Material, 17, 135-145
  • 18. Miguelez M.H., Zaera R., Molinari A., Cheriguene R., Rusinek A., 2009, Residual stresses in orthogonal cutting of metals: The effect of thermomechanical coupling parameters and of friction, Journal of Thermal Stresses, 32, 269-289
  • 19. Mrówka-Nowotnik G., Sieniawski J., 2005, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys, J. of Mater. Proc. Tech., 162/163, 367-372
  • 20. Oussouaddi O., Klepaczko J.R., 1991, An analysis of transition from isothermal to adiabatic deformation in the case of a tube under torsion, Proceedings of the conference on DYMAT 91. J. Phys. IV; Coll. C3 (Suppl. III): C3-C323
  • 21. P´erez-Castellanos J.L., Guzm´an R., Rusinek A., Mel´endez J., 2010, Temperature increment during quasi-static compression tests using Mg metallic alloys, Materials and Design, 31, 7, 3259-3269
  • 22. Rabin Y., Rittel, D., 2000, Infrared temperature sensing of mechanically loaded specimens: thermal analysis, Experimental Mechanics, 40, 197-202
  • 23. Rodr´ıguez-Mart´ınez J.A., Rusinek A., Chevrier P., Bernier R., Arias A., 2010, Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles, Int. J. Impact. Eng., 37, 828-841
  • 24. Rosakis P., Rosakis A.J., Ravichandran G., Hodowany J., 2000, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, Journal Mech. Phys. Solids, 48, 581-607
  • 25. Rusinek A., Klepaczko J.R., 2001, Effect of adiabatic heating in some processes of plastic deformation, 4th International Symposium on Impact Engineering, Kunamoto, Jap´an, Impact Engineering and Application, I/II, 37-53
  • 26. Rusinek A., Nowacki W.K., Gadaj P., Klepaczko J.R., 2003, Measurement of temperature coupling by thermovision and constitutive relation at high strain rates for the dual phase sheet steel, Journal de Physique IV France, 110, 411-416
  • 27. Rusinek A., Klepaczko J.R., 2007, Experiments on heat generated during plastic deformation and stored energy for TRIP steels, Materials and Design, 30, 35-48
  • 28. Rusinek A., Zaera R., Klepaczko J.R., 2007, Constitutive relations in 3-D for a wide range of strain rates and temperatures – application to mild steels, Int. J Solids Structures, 44, 5611-5634
  • 29. Rusinek A., Cheriguene R., Baumer A., Klepaczko J.R., Larour P., 2008, Dynamic behaviour of high-strength sheet steel in dynamic tension, experimental and numerical analyses, Journal of Strain Analysis for Engineering Design, 43, 37-53
  • 30. Taylor G.I., Quinney M.A., 1934, The latent energy remaining in a metal after cold working, Proc. R. Soc. London, A143, 307-326
  • 31. Thomson W. (Lord Kelvin), 1853, On dynamical theory of heat, Trans. R. Soc. Edimb., 261-282
  • 32. Trojanowski A., Macdougall D., Harding J., 1998, An improved technique for the experimental measurement of specimen surface temperature during Hopkinson-bar tests, Measurement Sci. Tech., 9, 12-19
  • 33. Zaera R., Fern´andez-S´aez J., 2006, An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations, International Journal of Solids and Structures, 43, 6, 1594-1612
  • 34. Zehnder A.T., 1991, A model for the heating due to plastic work, Mechanics Research Communications, 18, 1, 23-28
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0029-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.