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Abstract 
The paper presents the possibility of modelling transducers used in transport facilities using fractional 

calculus and analyses of the dynamic properties in terms of time and frequency for the measuring transducer 

with a seismic mass. Pointed out the benefits of fractional calculus in the description of the dynamics of 

transducers used in transportation facilities. Simulation studies were performed in the development 

environment of MATLAB&Simulink. 

Słowa kluczowe: modelowanie, rachunek różniczkowy 

Abstrakt 
W artykule przedstawiono możliwość modelowania przetworników pomiarowych stosowanych w obiektach 

transportowych przy zastosowaniu rachunku różniczkowo-całkowego rzędów niecałkowitych (ang. fractional 

calculus). W pracy dokonano analizy właściwości dynamicznych w ujęciu czasowym i częstotliwościowym 

dla przetwornika pomiarowego z masą sejsmiczną. Wskazano na zalety zastosowania rachunku różniczkowo- 

-całkowego rzędów niecałkowitych w opisie dynamiki przetworników stosowanych w obiektach transporto-

wych. Badania symulacyjne wykonano w środowisku programistycznym MATLAB&Simulink. 

 

Introduction 

The differential and integral calculus of frac-

tional order better known in English as fractional 

calculus or in French as analyse fractionnaire is 

a particular case of the scientific knowledge on 

derivatives and integrals contained in the classical 

mathematical analysis [1, 2, 3]. Thus, fractional 

calculus covers derivatives and integrals of integer 

and fractional (non-integer) orders, in other words 

of optional orders.  

A recent dynamic development of investigations 

on the use of fractional calculus for the analysis of 

dynamic systems [3] encouraged the authors of this 

paper to attempt its use for the analysis and model-

ling of measuring transducers with a seismic mass. 

Mathematical model of measuring 
transducer with seismic mass 

Architecture of the measuring transducer with 

a seismic mass has been discussed in detail in the 

papers [4, 5, 6, 7]. 
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The equation for the transducer’s seismic mass 

motion is derived from the equation of equilibrium 

of forces: 

 0)()()(  tFtFtF srb  (1) 

where: 

Fb(t) – inertial force,  

Fr(t) – damping force,  

Fs(t) – the spring reaction force. 

Table 1 presents the components of the trans-

ducer’s seismic mass motion equation and charac-

teristic parameters. 

Table 1. Components of the equilibrium of forces equation 

Tabela 1. Składowe równania równowagi sił 
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The differential equation describing the absolute 

motion of the transducer’s seismic mass takes the 

following form: 
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After the relative seismic mass displacement has 

been introduced to equation (2): 
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The latter can be rewritten as: 
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Figure 1 depicts over time responses of a typical 

2
nd

 order transducer to step inputs. The responses 

are shown for different values of the damping  

degree. For the given 0, an increase in  reduces 

oscillation. 
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Fig. 1. Time characteristics of the 2nd order measuring trans-

ducer 

Rys. 1. Charakterystyki czasowe przetwornika pomiarowego 

drugiego rzędu 

Figure 2 presents the transducer’s logarithmic 

frequency characteristics. These characteristics 

indicate that the 2
nd

 order transducer introduces 

distortions due to the fact that it does not transmit 

signals of different frequencies in the same way. 
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Fig. 2. Logarithmic amplitude frequency characteristics and 

logarithmic phase frequency characteristics of the 2nd order 

measuring transducer 

Rys. 2. Logarytmiczne charakterystyki częstotliwościowe 

(amplitudowa i fazowa) przetwornika pomiarowego drugiego 

rzędu 

Measuring transducers with a seismic mass,  

depending on the selection of parameters charac-

terising their dynamic properties, can serve for 

measurement of such quantities as displacement, 

speed, or acceleration. Displacement )(tx  is the 

input quantity in these transducers. Depending on 
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the selected parameters kS, m and Bt a transducer 

can be used for the measurement of different quan-

tities. Hence: 

– assuming low values of kS and Bt, and high value 

of m, equation (4) can be written down in the 

following way: 
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Then the transducer measures displacement and 

fulfills the role of a vibrometer.  

– assuming low values of kS and m and high value 

of Bt a transducer for velocity (speed) measure-

ments is obtained: 
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– assuming high value of kS, low values of m and 

Bt, can be written as follows: 

 )(
d

d
)(

2

2
2
0 tx

t
tw   (7) 

Then the transducer measures acceleration (accel-

erometer). In practical measurements of vibrations, 

a transducer with a seismic mass to measure the rail 

vehicle acceleration is used. Parameters of speed 

and displacement are determined by means of ele-

ments integrating a signal from the accelorometer. 

Simulation of operations of the transducer de-

scribed by equation (4) was carried out while as-

suming the following values of parameters: 0 = 15 

[rad/s],  = 1.7 and k = 1 [m/N] in the MATLAB 

&Simulink environment. 

Dynamic behaviour of the transducer described 

by the differential equation of integer order (4) and 

taking into account parameters can be presented in 

the form of the transfer function: 
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Figure 3 depicts the step and impulse responses 

of the transducer characterized by the transfer func-

tion (8). 

Figure 4 shows logarithmic amplitude- and 

phase frequency characteristics of the transducer. 

Amplitude amplification equal 0 db is obtained 

from ca. 100 Hz, at a simultaneous phase displace-

ment from 180° to 200°. 

Figure 5 presents a transducer’s response to the 

sinusoidal input of 400 Hz in frequency. The trans-

ducer’s delayed response to the input signal is 

clearly seen here.  

 

 
 

 

 
 

Fig. 3. Step response (top) and impulse response (bottom) of 

the transducer 

Rys. 3. Odpowiedź skokowa i impulsowa przetwornika 

 

Fig. 4. Transducer’s amplitude and phase frequency characte-

ristics 

Rys. 4. Charakterystyka amplitudowa i fazowa przetwornika 
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transducer  

response 

 

Fig. 5. Transducer’s response to sinusoidal function 

Rys. 5. Odpowiedź przetwornika na wymuszenie sinusoidalne 

Model of measuring transducer with 
seismic mass described by fractional 
calculus of integer orders 

Modelling of an actual transducer or a measur-

ing system consisting of multiple devices requires 

consideration of response dynamics of each of them 

[8]. Knowing the input signal and the response 
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signal one can describe the system’s dynamic be-

haviour in the form of a differential equation. Accu-

racy of the model achieved in such a way depends 

mainly on the identification method used. The use 

of a differential and integral equation in the process 

of identification creates new opportunities of ob-

taining a model which reflects the dynamic behav-

iour of the investigated object more accurately.  

This section presents a model of the transducer 

described by fractional calculus but of integer  

orders [12]. 

Equation (4) describing the transducer can be 

written down in the form of the differential equa-

tion: 

2011220112   kkkkkk xaxbxbwawawa  (9) 

or as the matrix equation: 
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Differential equation (9) in the integral deriva-

tive notation assumes the form: 
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where )(n
k is the reverse difference of the discrete 

function, defined as follows: 
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After equation (12) has been taken into account, 

equation (11) in matrix notation takes the following 

form: 
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After the measuring transducer’s responses to 

the sinusoidal input signal had been compared, the 

transducer was described by three models: 

– classical continuous model described by the 

transfer function: 
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– classical discrete model obtained from the con-

tinuous model, described by the discrete trans-

mittance: 
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– quasi-fractional discrete model determined by 

the integral-derivative notation from equation 

(13) and discrete transmittance (15):  
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Investigation of the model responses were car-

ried out in the MATLAB&Simulink environment. 

Figure 6 depicts a block diagram of the measuring 

system. 

Responses of all models to the sinusoidal input 

signal with frequency of 100 rad/s are shown in 

figure 7. 

Fig. 6. Block diagram of the measuring system [4] 

Rys. 6. Schemat blokowy układu pomiarowego [4] 
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Signals from the models are displaced in phase 

in relation to the input signal. It is worth noticing 

that the model described by transmittance (16)  

correctly reproduces the value of the input signal 

amplitude. 

Figure 8 shows comparisons of the presented 

models’ responses ((15) and (16)) to the step input.  

The classical model’s response passes into a steady 

state after the time of 0.6 s from the moment the 

signal occurs. In the case of the integral-derivative 

model, the steady state occurs after the time of 

0.005 s and its value is close to the value of the 

input amplitude with the apposite sign. 

Figure 9 compares responses of the presented 

models (15) and (16) to the impulse input. The 

classical model response passes into the steady state  

Fig. 7. Comparisons of responses of the measuring transducer models [9] 

Rys. 7. Porównanie odpowiedzi modeli przetwornika pomiarowego [9] 

Fig. 8. Comparisons of the measuring transducer models in response to step input [9] 

Rys. 8. Porównanie odpowiedzi modeli przetwornika na wymuszenie skokowe [9] 
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Fig. 10. Comparison of Bode diagrams of the measuring transducer models [4] 

Rys. 10. Porównanie charakterystyk Bodego modeli przetwornika pomiarowego [4] 
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Fig. 9. Comparison of the measuring transducer models responses to the impulse input [9] 

Rys. 9. Porównanie odpowiedzi modeli przetwornika na wymuszenie impulsowe [9] 
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after the time of 0.07 s from the moment the signal 

occurs. In the case of the integral-derivative model 

this time is reduced to the value of 0.001 s. 

Figure 10 compares frequency characteristics 

(Bode diagrams) for the discrete model of the 

measuring transducer and the discrete model of the 

measuring transducer determined by the integral-

derivative notation. 

For the characteristics presented, amplitude  

amplification of the fractional model equal 0 db 

is achieved for the frequency from 0.001 rad/s, and 

for the “classical” model – from 100 Hz, at a per-

manent phase displacement equal 180°.  

It can be concluded from the above said that the 

description of the transducer with a seismic mass 

by means of the fractional calculus is an advantage 

in the case these transducers are used for vibration 

tests of rail vehicles. Vibration tests of rail vehicles 

are one of many types of tests aiming to confirm 

safety of such vehicles and parameters defining 

their usefulness for specific transport applications 

[7]. Requirements concerning dynamic behaviour 

of rail vehicles from the point of view of safety 

parameters, railway track fatigue and ride quality 

are described in the UIC 518 document of the  

Union Internationale des Chemins de Fer (Interna-

tional Union of Railways) organisation. The stand-

ards included in it are part of the documentation 

approving a rail vehicle for traffic admittance in 

Europe. The UIC 518 standard specifies the range 

of measured frequencies of the measured quantity 

to be from 0.4 Hz to 10 Hz.  

On the basis of the Bode diagram characteristics 

(Fig. 10) it can be inferred that for the measuring 

transducer model determined by the fractional  

calculus method, in comparison to the model de-

termined in the classical manner, the range of the 

input signal amplitude processing is extended by 

low frequencies. 

Models of measuring transducer described 
by the fractional calculus of non-integer 
order 

The section below presents the transducer  

described by the fractional calculus of non-integer 

(fractional) orders. 

Provided that a non-integer derivative will better 

describe the dynamic behaviour of the element 

responsible for damping, equation (4) is written 

down as follows: 
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In the MATLAB&Simulink environment, the 

measuring transducer of transfer function was mod-

elled:  
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Figure 11 compares how amplitude and phase 

characteristics of the integral derivative model of 

the transducer change depending on the order value 

of the derivative v1 at A1 factor (19) responsible for 

the damping value. These values were changed 

within the range from 0.2 to 1.8 by a 0.2 step. The 

remaining values of the orders of derivatives are 

integer values identical with those in the “classical” 

notation. 

 

Fig. 11. Amplitude and phase characteristics of the transducer’s 

integral derivative model depending on the values of the non-

integer order [9] 

Rys. 11. Charakterystyki amplitudowa i fazowa modelu po-

chodno-całkowego w zależności od wartości niecałkowitego 

rzędu [9]  

While comparing amplitude and phase charac-

teristics of the transducer model written down by 

means of the classical equation and the integral-

derivative model, one can state that the range of 

amplitude and phase frequency changes within 

comparable frequencies in the case of the integral-

derivative model changes within a narrow range. 

One can also notice an increase in amplitude ampli-

fication depending on the value of the order of the 

derivative regardless of the fact whether the order 

value is rising or falling. In the case of phase char-

acteristics an increase in the order value causes 

increased phase displacement in relation to the  

order value equal 1. A decrease in the order entails 

an appropriate decrease in phase displacement. 

Generalising equation (17) to equation (19): 
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and considering the fact that the integer order  

derivatives in fractional calculus are a peculiar case 

of non-integer derivatives, equation (12) can be 

written down as follows: 
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Figure 12 shows frequency characteristic fami-

lies for v2 = 2 and subsequent v1. 

 

Fig. 12. Logarithmic frequency characteristics for v2 = 2 and 

subsequent v1 [10] 

Rys. 12. Logarytmiczne charakterystyki częstotliwościowe dla 

v2 = 2 i kolejnych v1 [10] 

Conclusions 

Checking up how the measuring transducer 

models described by fractional calculus reflect  

actual measuring transducers requires further inves-

tigations. So does checking up they reflect the  

dynamic behaviour of the input signal processing 

more accurately than the model described by the 

integer order differential equation. 

Although the authors of this paper pointed only 

at advantages of using the fractional calculus for 

measuring transducers for vibration tests of rail 

vehicles, the fractional calculus can also be used 

successfully for describing the dynamic behaviour 

of measuring transducers used in diagnostics of 

various transport facilities.  

Global research into such physical phenomena 

as liquid permeation through porous substances, 

electric load transfer through an actual insulator, or 

heat transfer through a heat barrier, descriptions of 

friction or properties of viscoelastic materials 

showed that fractional calculus describes this type 

of phenomena more accurately than classical math-

ematical analysis. Thus, the derivative and integral 

of optional orders open a number of possibilities in 

the field of the dynamic system identification and 

creation of new, hitherto unattainable, algorithms of 

the measuring system control. 
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