PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wariacyjne sformułowanie problemu wyboczenia wielościennych nanorurek węglowych modelowanych jako nielokalne belki Timoszenki
Języki publikacji
EN
Abstrakty
EN
Variational formulation for multi-walled carbon nanotubes subject to buckling is derived by the semi-inverse method with governing equations based on the nonlocal Timoshenko beam theory which takes small scale effects and shear deformation into account. The nonlocal theory improves the range and applicability of the physical model by modelling the nano-scale phenomenon more accurately. The natural and geometric boundary conditions are derived, which lead to a set of coupled boundary conditions for multi-walled nanotubes as opposed to uncoupled boundary conditions in the case of simply supported and clamped boundaries and also in the case of a local theory. The variational principle and the corresponding Rayleigh quotient facilitate the application of approximate and numerical methods of solution.
PL
W pracy przedyskutowano wariacyjne sformułowanie zagadnienia wyboczenia wielościennych nanorurek węglowych wyprowadzone metodą pół-odwrotną z równaniami konstytutywnymi opartymi na nielokalnej teorii belki Timoszenki uwzględniającej efekty małoskalowe i odkształcenia postaciowe. Teoria nielokalna rozszerza zakres stosowalności modelu fizycznego belki poprzez dokładniejsze odwzorowanie zjawisk nanoskalowych. Wprowadzono naturalne i geometryczne warunki brzegowe dla wielościennych nanorurek, które ostatecznie ujęto jako warunki brzegowe sprzężone, w odróżnieniu do warunków rozprzężonych w przypadku prostego podparcia lub zamurowania brzegów oraz zastosowania teorii lokalnej. Wykazano, że wykorzystane zasady wariacyjne i wynikający iloraz Rayleigha podnoszą wydajność przybliżonych metod numerycznych.
Rocznik
Strony
321--333
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • University of KwaZulu-Natal, School of Mechanical Engineering, Durban, South Africa, adali@ukzn.ac.za
Bibliografia
  • 1. Adali S., 2008, Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory, Physics Letters A, 372, 5701-5705
  • 2. Adali S., 2009a, Variational principles for transversely vibrating multi-walled carbon nanotubes based on nonlocal Euler-Bernoulli beam model, Nano Letters, 9, 1737-1741
  • 3. Adali S., 2009b, Variational principles for multi-walled carbon nanotubes undergoing nonlinear vibrations by semi-inverse method, Micro and Nano Letters, 4, 4, 198-203
  • 4. Chang T., Gao H., 2003, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, Journal of Mechanics and Physics of Solids, 51, 1059-1074
  • 5. Edelen D.G.B., Laws N., 1971, On the thermodynamics of systems with nonlocality, Archive for Rational Mechanics and Analysis, 43, 24-35
  • 6. Eringen A.C., 1972, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 425-435
  • 7. Harik V.M., 2001, Ranges of applicability for the continuum beam model In the mechanics of carbon nanotubes and nanorods, Solid State Communications, 120, 331-335
  • 8. He J.-H., 1997, Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, International Journal of Turbo Jet-Engines, 14, 23-28
  • 9. He J.-H., 2004, Variational principles for some nonlinear partial differentia equations with variable coefficients, Chaos, Solitons and Fractals, 19, 847-851
  • 10. He J.-H., 2005, Variational approach to (2+1)-dimensional dispersive long water equations, Physics Letters A, 335, 182-184
  • 11. He J.-H., 2006, Variational theory for one-dimensional longitudinal beam dynamics, Physics Letters A, 352, 276-277
  • 12. He J.-H., 2007, Variational principle for two-dimensional incompressible inviscid flow, Physics Letters A, 371, 39-40
  • 13. Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E.A., 2008, Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity, Physica E: Low-dimensional Systems and Nanostructures, 40, 2791-2799
  • 14. Hsu J.-C., Chang R.-P., Chang W.-J., 2008, Resonance frequency of Chirac single-walled carbon nanotubes using Timoshenko beam theory, Physics Letters A, 372, 2757-2759
  • 15. Huang D.W., 2008, Size-dependent response of ultra-thin films with surface effects, International Journal of Solids and Structures, 45, 568-579
  • 16. Kucuk I., Sadek I.S., Adali S., 2010, Variational principles for multi-walled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory, Journal of Nanomaterials, 2010, 1-7
  • 17. Lima C.W., Heb L.H., 2004, Size-dependent nonlinear response of thin elastic films with nano-scale thickness, International Journal of Mechanical Sciences, 46, 1715-1726
  • 18. Liu H.-M., 2005, Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, Chaos, Solitons and Fractals, 23, 573-576
  • 19. Lu P., Lee H.P., Lu C., Zhang P.Q., 2007, Application of nonlocal beam models for carbon nanotubes, International Journal of Solids and Structures, 44, 5289-5300
  • 20. Miller R.E., Shenoy V.B., 2000, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147
  • 21. Murmu, T., Pradhan, S.C., 2009, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E: Low-dimensional Systems and Nanostructures, 41, 1232-1239
  • 22. Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45, 288-307
  • 23. Reddy J.N., 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, 103, 023511
  • 24. Ru C.Q., 2000, Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Physics Review B, 62, 16962-16967
  • 25. Sears A., Batra R.C., 2006, Buckling of multiwalled carbon nanotubes under axial compression, Physics Reviews B, 73, 085410
  • 26. Sudak L.J., 2003, Column buckling of multiwalled carbon nanotubes Rusing nonlocal continuum mechanics, Journal of Applied Physics, 94, 7281-7287
  • 27. Sun C.T., Zhang H., 2003, Size-dependent elastic moduli of platelike nanomaterials, Journal of Applied Physics, 93, 1212-1218
  • 28. Wang C.M., Kitipornchai S., Lim C.W., Eisenberger M., 2008, Beam bending solutions based on nonlocal Timoshenko beam theory, ASCE Journal of Engineering Mechanics, 134, 475-481
  • 29. Wang C.M., Zhang Y.Y., He X.Q., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology, 18, 105401
  • 30. Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S., 2006, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics, 39, 3904-3909
  • 31. Wang L., Hu H., 2005, Flexural wave propagation in single-walled carbon nanotubes, Physics Reviews B, 71, 195412
  • 32. Wang Q., 2005, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98, 124301
  • 33. Wang Q., Hu T., Chen G., Jiang Q., 2005, Bending instability characteristics of double-walled carbon nanotubes, Physics Reviews B, 71, 045403
  • 34. Wang Q., Varadan V.K., 2005, Stability analysis of carbon nanotubes via continuum models, Smart Materials and Structures, 14, 281-286
  • 35. Wang Q., Zhou G.Y., Lin K.C., 2006 Scale effect on wave propagation of double-walled carbon nanotubes, International Journal of Solids and Structures, 43, 6071-6084
  • 36. Yakobson B.I., Smalley R.E., 1997, Fullerene nanotubes: C-100000 and beyond, American Scientist, 85, 324-337
  • 37. Zhang Y.Q., Liu X., Zhao J.H., 2008, Influence of temperature change on column buckling of multiwalled carbon nanotubes, Physics Letters A, 372, 1676-1681
  • 38. Zhang Y.Y., Wang C.M., Tan V.B.C., 2006, Buckling of multiwalled carbon nanotubes using Timoshenko beam theory, ASCE Journal of Engineering Mechanics, 132, 952-958
  • 39. Zhou W.X., 2006, Variational approach to the Broer-Kaup-Kupershmidt equation, Physics Letters A, 363, 108-109
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0010-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.