Identyfikatory
Warianty tytułu
Klasy topologiczne statycznie wyznaczalnych belek o dowolnej liczbie podpór
Języki publikacji
Abstrakty
The paper presents all topologies of statically determinate beams with arbitrary number of pin supports. The geometry of each beam with a fixed topology is optimized by a genetic algorithm, with absolute maximum moment as the objective function. An equality relation between minimum values of this function is defined on the set of all topologies as an equivalence relation. This relation partitions the set of topologies into equivalence classes, called topological classes, for uniform, linear and parabolic gravity loads. An in-depth description of these classes is provided. Exact formulas for optimal locations of supports and hinges are found for the uniform load.
W pracy omówiono wszystkie topologie statycznie wyznaczalnych belek o dowolnej liczbie przegubowych podpór. Geometrię każdej belki o ustalonej topologii zoptymalizowano za pomocą algorytmu genetycznego z bezwzględnie maksymalnym momentem jako funkcją celu. Relację równości minimalnych wartości tej funkcji zdefiniowano na zbiorze wszystkich topologii jako relację równoważności. Na podstawie tej relacji dokonano podziału zbioru topologii na klasy równoważności, zwane klasami topologicznymi, pod równomiernym, linowym i kwadratowym grawitacyjnym obciążeniem. Przedstawiono szczegółową charakterystykę tych klas. Znaleziono ścisłe wzory na optymalne położenie podpór i przegubów belek obciążonych równomiernie.
Czasopismo
Rocznik
Tom
Strony
1079--1100
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Faculty of Architecture, Bialystok University of Technology, Białystok, Poland, a.kozikowska@pb.edu.pl
Bibliografia
- 1. Allen E., Zalewski W., 2010, Form and Forces: Designing Efficient, Expressive Structures, Wiley, New Jersey
- 2. Bojczuk D., Szteleblak W., 2006, Application of finite variations to topology and shape optimization of 2D structures, Journal of Theoretical and Applied Mechanics, 44, 2, 323-349
- 3. Bojczuk D., Mróz Z., 1998, On optimal design of supports in beam and frame structures, Structural Optimization, 16, 47-57
- 4. Friswell M.I., 2006, Efficient placement of rigid supports using finite element models, Communications in Numerical Methods in Engineering, 22, 205-213
- 5. Goldberg D.E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts
- 6. Golubiewski M., 1995, Directed graphs as the generators of the whole set of Gerber beams, Mechanism and Machine Theory, 30, 7, 1013-1017
- 7. Imam M.H., Al-Shihri M., 1996, Optimum topology of structural supports, Computers and Structures, 61, 147-154
- 8. Jang G.W., Shim H.S., Kim Y.Y., 2009, Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model, Journal of Mechanical Design, 131, 2, 021005.1-021005.11
- 9. Kernighan B.W., Ritchie D.M., 1988, The C Programming Language, Prentice-Hall, Englewood Cliffs, New York
- 10. Kirsch U., 1989, Optimal topologies of structures, Applied Mechanics Reviews, 42, 8, 223-239
- 11. Kolendowicz T., 1993, Structural Mechanics for Architects, Arkady, Warsaw [in Polish]
- 12. Lyu N., Saitou K., 2005, Optimization of multicomponent beam structure via decomposition-based assembly synthesis, Journal of Mechanical Design, 127, 2, 170-183
- 13. Mróz Z., Bojczuk D., 2003, Finite topology variations in optimal design of structures, Structural and Multidisciplinary Optimization, 25, 153-173
- 14. Mróz Z., Rozvany G.I.N., 1975, Optimal design of structures with variable support positions, Journal of Optimization Theory and Applications, 15, 85-101
- 15. Pedersen P., Pedersen N.L., 2009, Analytical optimal designs for long and short statically determinate beam structures, Structural and Multidisciplinary Optimization, 39, 343-357
- 16. Rozvany G.I.N., Bendsøe M.P., Kirsch U., 1995, Layout optimization of structures, Applied Mechanics Reviews, 48, 41-119
- 17. Rychter Z., Kozikowska A., 2009, Genetic algorithm for topology optimization of statically determinate beams, Archives of Civil Engineering, 55, 1, 103-123
- 18. Salvadori M., Heller R., 1975, Structure in Architecture: The Building of Buildings, Prentice-Hall, Englewood Cliffs
- 19. Siegel C., 1962, Structure and Form in Modern Architecture, Reinhold Publishing Corporation, New York
- 20. Wang B.P., Chen J.L., 1996, Application of genetic algorithm for the support location optimization of beams, Computers and Structures, 58, 797-800
- 21. Wang D., 2004, Optimization of support positions to minimize the maximal deflection of structures, International Journal of Solids and Structures, 41, 7445-7458
- 22. Wang D., 2006, Optimal design of structural support positions for minimizing maximal bending moment, Finite Elements in Analysis and Design, 43, 95-102
- 23. Won K.M., Park Y.S., 1998, Optimal support positions for a structure to maximize its fundamental natural frequency, Journal of Sound and Vibration, 213, 5, 801-812
- 24. Zhu J.H., Zhang W.H., 2006, Maximization of structure natural frequency with optimal support layout, Structural and Multidisciplinary Optimization, 31, 462-469
- 25. Zhu J.H., Zhang W.H., 2010, Integrated layout design of supports and structures, Computer Methods in Applied Mechanics and Engineering, 199, 557-569
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0010-0025