PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational principles and natural boundary conditions for multilayered orthotropic graphene sheets undergoing vibrations and based on nonlocal elastic theory

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zasady wariacyjne i naturalne warunki brzegowe dla wielowarstwowych ortotropowych paneli grafenowych poddanych drganiom, sformułowane w ramach nielokalnej teorii sprężystości
Języki publikacji
EN
Abstrakty
EN
Variational principles are derived for multilayered orthotropic graphene sheets undergoing transverse vibrations based on the nonlocal elastic theory of orthotropic plates which provide a continuum model for graphene sheets. The variational formulation allows the derivation of natural boundary conditions which are expressed in the form of a set of coupled equations for multilayered sheets as opposed to uncoupled boundary conditions applicable to simply supported and clamped boundaries and also in the case of a formulation based on the local (classical) elasticity theory. For the free vibrations case, the Rayleigh quotient is derived. The methods for the variational formulation use techniques of calculus of variations and the semi-inverse method for deriving variational integrals. Variational formulations provide the basis for a number of approximate and numerical methods of solutions and improve the understanding of the physical phenomena.
PL
W pracy zajęto się problemem drgań poprzecznych ortotropowych paneli grafenowych, dla których sformułowano zasady wariacyjne na podstawie nielokalnej teorii sprężystości, co pozwoliło na budowę ciągłego modelu takich struktur. Formuła wariacyjna umożliwiła konstrukcję naturalnych warunków brzegowych wyrażonych zbiorem sprzężonych równań opisujących grafenowe panele wielowarstwowe w odróżnieniu od rozprzężonych warunków brzegowych stosowanych jedynie do zamocowań typu swobodne podparcie lub zamurowanie, jednocześnie przy zastosowaniu lokalnej (klasycznej) teorii sprężystości. Dla przypadku drgań swobodnych wyznaczono iloraz Rayleigha układu z grafenu. W prezentowanym sformułowaniu użyto odpowiednich technik obliczania funkcjonałów i półodwrotnej metody wyznaczania całek. Wykazano, że postać wariacyjna stanowi podstawę dla numerycznych metod poszukiwania przybliżonych rozwiązań i pogłębia zrozumienie zachodzących zjawisk fizycznych w takich układach.
Rocznik
Strony
621--639
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, University of KwaZulu-Natal, Durban, South Africa, adali@ukzn.ac.za
Bibliografia
  • 1. Adali S., 2008, Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory, Physics Letters A, 372, 5701-5705
  • 2. Adali S., 2009a, Variational principles for transversely vibrating multi-walled carbon nanotubes based on nonlocal Euler-Bernoulli beam model, Nano Letters, 9, 5, 1737-1741
  • 3. Adali S., 2009b, Variational principles for multi-walled carbon nanotubes undergoing nonlinear vibrations by semi-inverse method, Micro and Nano Letters, 4, 198-203
  • 4. Adali S., 2011, Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams, Journal of Theoretical an Applied Mechanics, to appear
  • 5. Ansari R., Rajabiehfard R., Arash B., 2010, Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets, Comp. Mater. Sci., 49, 831-838
  • 6. Arsat R., Breedon M., Shafiei M., Spizziri P.G., Gilje S., Kaner R.B., Kalantar-Zadeh K., Wlodarski W., 2009, Graphene-like nanosheets for surface acoustic wave gas sensor applications, Chemical Physics Letters, 467, 4/6, 344-347
  • 7. Behfar K., Naghdabadi R., 2005, Nanoscale vibrational analysis of a multilayered graphene sheet embedded in an elastic medium, Composites Science and Technology, 65, 1159-1164
  • 8. Chang T., Gao H., 2003, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, Journal of Mechanics and Physics of Solids, 51, 1059-1074
  • 9. Choi S.M., Seo M.H., Kim H.J., Kim W.B., 2011, Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation, Carbon, 49, 3, 904-909
  • 10. Edelen D.G.B., Laws N., 1971, On the thermodynamics of systems with nonlocality, Archive for Rational Mechanics and Analysis, 43, 24-35
  • 11. Eringen A.C., 1972, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 425-435
  • 12. Eringen A.C., 1983, On differential of non-local elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703-4710
  • 13. Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer, New York
  • 14. Feng L., Chen Y., Ren J., Qu X., 2011, A graphene functionalized electrochemical apta-sensor for selective label-free detection of cancer cells, Biomaterials, In press, Available online 22 January 2011
  • 15. Gao Y., Hao P., 2009, Mechanical properties of monolayer graphene under tensile and compressive loading, Physica E, 41, 1561-1566
  • 16. He J.-H., 1997, Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, International Journal of Turbo Jet-Engines, 14, 23-28
  • 17. He J.-H., 2004, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19, 847-851
  • 18. He J.-H., 2005, Variational approach to (2+1)-dimensional dispersive long water equations, Phys. Lett. A, 335, 182-184
  • 19. He J.-H., 2006, Variational theory for one-dimensional longitudinal beam dynamics, Phys. Lett. A, 352, 276-277
  • 20. He J.-H., 2007, Variational principle for two-dimensional incompressible inviscid flow, Phys. Lett. A, 371, 39-40
  • 21. He L.H., Lim C.W., Wu B.S., 2004, A continuum model for size-dependent deformation of elastic films of nano-scale thickness, Int. J. Solids Struct., 41, 847-857
  • 22. He X.Q., Kitipornchai S., Liew K.M., 2005, Resonance analysis of multilayered graphene sheets used as nanoscale resonators, Nanotechnology, 16, 2086-2091
  • 23. Hemmasizadeh A., Mahzoon M., Hadi E., Khandan R., 2008, A method for developing the equivalent continuum model of a single layer graphene sheet, Thin Solid Films, 516, 7636-7640
  • 24. Jomehzadeh E., Saidi A.R., 2011, A study on large amplitude vibration of multilayered graphene sheets, Comp. Mater. Sci., 50, 1043-1051
  • 25. Kitipornchai S., He X.Q., Liew K.M., 2005, Continuum model for the vibration of multilayered graphene sheets, Phys. Rev. B, 72, 075443
  • 26. Kucuk I., Sadek I.S., Adali S., 2010, Variational principles for multi-walled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory, Journal of Nanomaterials, V. 2010, 1-7
  • 27. Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H., 2010, Recent advances in graphene based polymer composites, Progress in Polymer Science, 35, 11, 1350-1375
  • 28. Lian P., Zhu X., Liang S., Li Z., Yang W., Wang H., 2010, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electrochimica Acta, 55, 12, 3909-3914
  • 29. Liew K.M., He X.Q., Kitipornchai S., 2006, Predicting nano vibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Mater., 54, 4229-4236
  • 30. Liu H.-M., 2005, Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, Chaos, Solitons and Fractals, 23, 573-576
  • 31. Mishra A.K., Ramaprabhu S., 2011, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination, In press, Available online 11 February 2011
  • 32. Murmu T., Pradhan S.C., 2009, Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory, J. Appl. Phys., 105, 064319
  • 33. Narendar S., Gopalakrishnan S., 2010, Strong nonlocalization induced by small scale parameter on terahertz flexural wave dispersion characteristics of a monolayer graphene, Physica E, 43, 423-430
  • 34. Ni Z., Bu H., Zou M., Yi H., Bi K., Chen Y., 2010, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B: Condensed Matter, 405, 5, 1301-1306
  • 35. Poot M., Van Der Zant H.S.J., 2008, Nanomechanical properties of fewlayer graphene membranes, Appl. Phys. Lett., 92, 063111
  • 36. Pradhan S.C., 2009, Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory, Phys. Lett. A, 373, 4182-4188
  • 37. Pradhan S.C., Kumar A., 2010, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Comp. Mater. Sci., 50, 239-245
  • 38. Pradhan S.C., Kumar A., 2011, Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method, Composite Structures, 93, 774-779
  • 39. Pradhan S.C., Murmu T., 2009, Small scale effect on the buckling of singlelayered graphene sheets under biaxial compression via nonlocal continuum mechanics, Comput. Mater. Sci., 47, 268-274
  • 40. Pradhan S.C., Phadikar J.K., 2009, Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Phys. Lett. A, 373, 1062-1069
  • 41. Sakhaee-Pour A., 2009, Elastic properties of single-layered graphene sheet, Solid State Communications, 149, 1/2, 91-95
  • 42. Sakhaee-Pour A., 2009, Elastic buckling of single-layered graphene sheet, Comput. Mater. Sci., 45, 266-270
  • 43. Shen L., Shen H.-S., Zhang C.-L., 2010, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comp. Mater. Sci., 48, 680-685
  • 44. Shokrieh M.M., Rafiee R., 2010, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Materials and Design, 31, 2, 790-795
  • 45. Soldano C., Mahmood A., Dujardin E., 2010, Production, properties and potential of graphene, Carbon, 48, 8, 2127-2150
  • 46. Sun C.T., Zhang H.T., 2003, Size-dependent elastic moduli of platelike nanomaterials, Journal of Applied Physics, 93, 1212-1218
  • 47. Terrones M., Botello-Mendez A.R., Campos-Delgado J., López-Urıas F., Vega-Cantu Y.I., Rodrıguez-Macıas F.J., Elıas A.L., MUnoz-Sandoval E., Cano-Marquez A.G., Charlier J.-C., Terrones H., 2010, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today, 5, 4, 351-372
  • 48. Wu W., Liu Z., Jauregui L.A., Yu Q., Pillai R., Cao H., Bao J., Chen Y.P., Pei S.-S., 2010, Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensors and Actuators B: Chemical, 150, 296-300
  • 49. Yang M., Javadi A., Gong S., 2010, Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels, Sensors and Actuators B: Chemical, In Press, Available online 2 December 2010
  • 50. Yuan C., Hou L., Yang L., Fan C., Li D., Li J., Shen L., Zhang F., Zhang X., 2011, Interface-hydrothermal synthesis of Sn3S4/graphene sheet composites and their application in electrochemical capacitors, Mater. Lett., 65, 2, 374-377
  • 51. Zhou W.X., 2006, Variational approach to the Broer-Kaup-Kupershmidt equation, Phys. Lett. A, 363, 108-109
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0010-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.