Identyfikatory
Warianty tytułu
Metody Lie algebr w badaniu stabilności stochastycznych układów hybrydowych
Języki publikacji
Abstrakty
The problem of the stability of a class of stochastic linear hybrid systems with a special structure of matrices and a multiplicative excitation is considered. Sufficient conditions of the exponential p-th mean stability and the almost sure stability for a class of stochastic linear hybrid systems with the Markovian switching are derived. Also, sufficient conditions of the exponential mean-square stability for a class of stochastic linear hybrid systems satisfying the Lie algebra conditions with any switching are found. The obtained results are illustrated by examples and simulations.
W pracy rozważony został problem stabilności klasy liniowych stochastycznych układów hybrydowych ze szczególną strukturą macierzy i multiplikatywnym szumem. Znalezione zostały warunki wystarczające dla eksponencjalnej p-średniej stabilności i eksponencjalnej stabilności prawie na pewno dla klasy stochastycznych liniowych układów hybrydowych z Markowskim przełączaniem. Dodatkowo podane zostały warunki wystarczające dla eksponencjalnej stabilności średnio-kwadratowej dla klasy stochastycznych liniowych układów hybrydowych z dowolnym przełączaniem spełniających warunki Lie algebry. Otrzymane wyniki zilustrowane zostały przykładami i symulacjami.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31--50
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
- College of Sciences, Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Sciences, Warsaw, Poland, ewelina_seroka@o2.pl
Bibliografia
- 1. Bloch A.N., Crouch P.E., 1992, Kinematics and dynamics of nonholonomic control systems on Riemannian manifolds, Proceedings of the 32nd IEEE Conference on Decision and Control, Tuckson, AZ, 1-5
- 2. Boukas E.K., 2005, Stochastic Hybrid Systems: Analysis and Design, Birkh¨auser, Boston
- 3. Boukas E.K., 2006, Static output feedback control for stochastic hybrid systems: LMI aproach, Automatica, 42, 183-188
- 4. Brockett R.W., 1983, Asymptotic stability and feedback stabilization, In: Differential Geometric Control Theory, Brockett R.W., Millman R.S. and Sussman H.J. (Edit.), Birkhauser, 181-208
- 5. Bullo F., Leonard N.E., Lewis A.D., 2000, Controllability and motion algorithms for underactuated Lagrangian systems on Lie Groups, IEEE Trans. Autom. Cont., 45, 8, 1437-1454
- 6. Dimentberg M.F., Iourtchenko D.V., 2004, Random vibrations with impact: A review, Nonlinear Dynamics, 36, 229-254
- 7. Gurkan E., Banks S.P., Erkmen I., 2003, Stable controller design for the T-S fuzzy model of a flexible-joint robot arm based on Lie algebra, Proceedings of the 42nd IEEE Conference on Decision and Control, Maul, Hawaii USA, 4714-4722
- 8. He G., Lu Z., 2006, An input extension control method for a class of secondorder nonholonomic mechanical systems with drift, Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 1-6
- 9. Itkis Y., 1983, Dynamic switching of type-I/type-II structures in tracking servosystems, IEEE Trans. Automat. Control, 28, 531-534
- 10. Kazakow I.E., Artemiev B.M., 1980, Optimization of Dynamic Systems with Random Structure, Nauka, Moscow [in Russian]
- 11. Liberzon D., 2003, Switching in Systems and Control, Birkh¨auser, Boston, Basel, Berlin
- 12. Liberzon D., 2009, On new sufficient conditions for stability of switched linear systems, Proceedings of the 10th European Control Conference, Hungary, 3257-3262
- 13. Loparo K.A., Aslanis J.T., Hajek O., 1987, Analysis of switching linear systems in the plane, part 1: local behavior of trajectories and local cycle geometry, J. Optim. Theory Appl., 52, 365-394
- 14. Mao X., 1994, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, Inc., New York
- 15. Mao X., Pang S., Dengb F., 2008, Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations, Journal of Computational and Applied Mathematics, 213, 127141
- 16. Marigo A., 1999, Constructive necessary and sufficient conditions for strict triangularizability of driftless nonholonomic systems, Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, 2138-2143
- 17. Samelson H., 1969, Notes on the Lie algebra, New York, Van Nostrand Reinhold
- 18. Sussman H.J., Liu W., 1993, Lie bracket extensions and averaging the singlebracket case, In: Nonholonomic Motion Planning, Li Z. and Canny J.F. (Edit.), Boston, 109-148
- 19. Utkin V.I., 1978, Sliding Modes and their Application in Variable Structures Systems, Mir. Moscow
- 20. Willems J.L., 1976,Moment stability of linear white noise and coloured noised systems, Stochastic Problems in Dynamics, 67-89
- 21. Willems J.L., Aeyels D., 1976, Moment stability criteria for parametric stochastic systems, Int. J. Systems Sci., 7, 577-590
- 22. Yin G.G., Zhang B., Zhu C., 2008, Practical stability and instability of regime-switching diffusions, J. Control Theory Appl., 6, 105-114
- 23. Zhai G., Liu D., Imae J., Koboyashi T., 2006, Lie algebraic stability analysis for switched systems with countinuous-time and discrete-time subsystems, IEEE Trans. Automa. Cont., 53, 152-156
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM6-0005-0001