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ABSTRACT 

The paper presents the idea of using advanced machine learning algorithms to aid deci-
sion making in ship manoeuvring in real time. Evolutionary neural networks are used in this purpose. 
In the simulated model of manoeuvring ship a helmsman is treated as an individual in population 
of competitive helmsmen, which through environmental sensing and evolution processes learn 
how to navigate safely through restricted waters. 
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INTRODUCTION 

Research and development of navigational decision support systems is in-
tensively growing these days. Such advanced systems add many improvements to 
complex decision making processes: they speed up the process of decision making; 
decrease the amount of human errors during data analysing; speed up learning and 
improve effectiveness of training courses and help automate some aspects of com-
plex decision making processes that occur during manoeuvring a vessel on restricted 
waters. Increasing computational efficiency of personal computers allow to imple-
ment complex artificial intelligence methods and algorithms into that systems. 

One of the main tasks in Artificial Intelligence is to create the advanced sys-
tems that can effectively find correct answers for given problems and improve it 
over time. Intelligent autonomous units used in these systems can quickly adjust 
their activity to current situation, i.e. change their behaviour based on interactions 
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with the environment (fig. 1), become more efficient over time, and adapt to new 
situations as they occur.  

Evolutionary artificial neural networks, which is evolving neural networks 
with genetic algorithms, has been highly effective in advanced tasks, particularly 
those with continuous hidden states [6] and in the real-time learning systems [5]. 
Neuroevolution gives an advantage from evolving neural network topologies along 
with weights which can effectively store action values, related to state vector, in 
machine learning tasks. 

 
Fig. 1. Interaction of helmsman with an environment 

Source: own study. 
 

The main idea of using evolutionary neural networks in ship handling is 
based on evolving population of helmsmen. Learning process for simpler tasks also 
can be performed using classic approach, like Temporal Difference Reinforcement 
Learning [4, 16, 18], RL with Eligibility Traces [14], sparse coarse coding [17] or 
neural network with fixed structures (fig. 2). 

 
Fig. 2. General artificial neural network topology 

Source: own study. 
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The neural network is the helmsman’s brain making him able to make deci-
sions based on actual situation which is represented by a vector of input signals. In 
every time step the network calculates its output from signals received on the input 
layer. These input signals are calculated from current situation of the environment 
(in this case: vessel manoeuvring in the coastal area). The main goal of the individuals 
in population is to maximize their fitness value. This value is calculated from 
helmsman behaviour during simulation. The best-fitted individuals become parents 
for next generation. 

NEUROEVOLUTION OF ARTIFICIAL NEURAL TOPOLOGIES 

Topology and Weight Evolving Artificial Neural Networks (TWEANNs) [5] 
have the advantage over neural networks with fixed structures that the correct to-
pology need not be known at the design stage prior to evolution. NeuroEvolution of 
Augmenting Topologies (NEAT) is unique among other TWEANNS in that it be-
gins evolution with a population of minimal networks and adds nodes and connec-
tions to them over generations, allowing complex problems to be solved gradually 
based on simple ones [7]. 

The modified NEAT method is based in four fundamental rules which deal 
with challenges that exist in evolving efficient neural network topology:  

— begin with a minimal structure and add neurons and connections between them 
incrementally to discover most efficient solutions throughout evolution; 

— breed disparate topologies in a meaningful way by matching up genes with the 
same historical markings; 

— separate each innovative individual into a different species to protect it disappearing 
from the population prematurely; 

— reduce oversized topologies by removing neurons and connection between them to 
provide and sustain good overall performance of a whole population of helmsmen. 

GENETIC ENCODING 

A flexible genetic encoding is required for meaningful evolution of neural 
structures. Dynamic and expandable representation of network topology allows it to 
increase its complexity and maintain its performance in given task [2]. Genes are 
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grouped in two genomes: structural genome and connection genome (fig. 3). A struc-
tural genome in NEAT includes a number of inputs, neurons and outputs. A connection 
genome contains a list of connection genes, each of which refers to two nodes being 
connected with specified weighted value. Each connection gene has its innovation 
number which allows finding corresponding genes during crossover. 

 
Fig. 3. Genotype and phenotype of evolutionary neural network 

Source: own study. 
 
In this approach each connection gene specifies the output layer and node, 

the input layer and node, the weight of the connection, and an innovation number, 
which allows finding corresponding genes during crossover. 

MUTATION 

Mutation in evolutionary neural networks can change both connection 
weights and network structures. Connection weights mutate as in most neuroevolu-
tionary systems, with each connection either perturbed or not (fig. 4). Structural 
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mutations, which form the basis of complexity, occur in two ways. Each mutation 
expands the size of the genome by adding genes or reduces it by removing genes 
from offspring chromosome.  

In the add_connection mutation, a single new connection gene is added con-
necting two previously unconnected nodes. In the add_node mutation, an existing 
connection is split and the new node placed where the old connection used to be. 
The old connection is disabled and two new connections added to the genome. This 
approach allows changing topology slightly, without significant impact on efficiency 
of current topology but with possibility to add new connections to that new node in 
the future. 

In modified NEAT method the remove_connection mutation removes single 
connection gene and the remove_node mutation removes single hidden neuron and 
all connection genes related to it. 

 
Fig. 4. An example of weights and connection mutation. In this case two connection genes had 

their weights mutated, while the new connection gene no. 8 has been added to the genome 

Source: own study. 

CROSSOVER 

The system knows exactly which genes match up with which through innova-
tion numbers. Genes that do not match are either disjoint or excess, depending on 
whether they occur within or outside the range of the other parent’s innovation numbers. 
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In crossing over operation, the genes with the same innovation numbers are 
lined up. The offspring is then formed in one of three ways: 

— in uniform crossover: matching genes are randomly chosen for the offspring 
genome, with all disjoints and excesses from both parents; 

— in blended crossover: the connection weights of matching genes are averaged; 
— in elite crossover: disjoints and excesses are taken from more fit parent only, all 

redundant genes from less fit parent are discarded. All matching genes are averaged.  

These types of crossover were found to be most effective in evolution of 
neural networks in extensive testing compared to one-point crossover [6]. 

Disabled genes have a chance of being re-enabled during mutation, allowing 
networks to make use of older genes once again. 

Evolutionary neural network can keep historic trails of the origin of every 
gene in the population, allowing matching genes to be found and identified even in 
different genome structures. Old behaviours encoded in the pre-existing network 
structure have a chance to not to be destroyed and pass their properties through evo-
lution to the new structures, thus provide an opportunity to elaborate on these origi-
nal behaviours. 

Through mutation, the genomes in modified NEAT will gradually get larger 
for complex tasks and lower their size in simpler ones. Genomes of varying sizes 
will result, sometimes with different connections at the same positions. Any crosso-
ver operator must be able to recombine networks with differing topologies, which 
can be difficult. Historical markings represented by innovation numbers allow 
NEAT to perform crossover without analysing topologies. Genomes of different 
organizations and sizes stay compatible throughout evolution, and the variable- 
-length genome problem is essentially solved. This methodology allows NEAT to 
increase complexity of structure while different networks still remain compatible. 

Additionally different sizes and structures of networks group their genetic 
material into species. 

Speciation of population can be seen as a result from the same process as 
adaptation [1], natural selection exerted by interaction among organisms, and be-
tween organisms and their environment [15]. 

Divergent adaptation of different populations would lead to speciation. Spe-
ciation of the population assures that individuals compete primarily within their own 
niches instead of competition within the whole population. In this way topological 
innovations of neural network are protected and have time to optimize their structure 
before they have to compete with other experienced helmsmen in the population [12]. 
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Generally, during species assigning process, as described in [11], when a new 
helmsman appears in population, its genome must be assigned to one of the existing 
species or, if it is too innovative comparing to any other individuals, the new species 
is created. 

Compatibility of genome g with particular species s is estimated accordingly 
to value of distance between two individuals which is calculated with formula 1: 
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where:  
c1, c2, c3 — weight (importance) coefficients;  
E — number of excesses;  
D — number of disjoints;  
W — average weight differences of matching genes;  
N — the number of genes in the larger genome. 
 

There must be estimated a compatibility threshold δt at the beginning of the 
simulation and if δ ≤ δt then genome g is placed into this species. One can avoid the 
problem of choosing the best value of δ by making δt dynamic. The algorithm can 
raise δt if there are too many species in population, and lower δt  if there are too few. 

DECISION MAKING SUPPORT  
WITH EVOLUTIONARY NEURAL NETWORKS 

The main goal of this research is to simulate a situation of ship manoeuvring 
through a restricted coastal area and improve decision making process in real time 
with Evolutionary Neural Network. 

Safe navigation task for artificial helmsman can be described in many ways 
[8, 9, 10, 13]. Most important is to define proper state vector from available wide 
range of data signals and arbitrary determine fitness function values received by the 
helmsman. Fitness function determines the quality of each individual. Subsequently 
it defines helmsman’s ability to sail safely toward designated goal. 

In the simulation of safe passage through restricted waters with simplified 
channel structure there are no moving vessels in the area (fig. 5). Helmsman  
observes current situation which is encoded as input signals for his neural network 
and calculates the best, in his opinion, available action. 
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Neural network output values are signals for rudder angle (δ) and thrust control 
(rpm). It is crucial for usefulness of simulation to determine the number of neural 
network outputs. 

 
Fig. 6. Example of considered data signals in ship handling with ENN 

Source: own study. 
 

More outputs mean more calculations but on the other hand better accuracy 
and usefulness of designed decision support system. Additionally too many inputs and 
outputs may cause learning process to complicate, thus making a helmsman unable 
to quickly adapt to new situations. This accuracy vs. performance dilemmas were 
examined extensively in previous works [9, 10, 12, 13]. 

The fitness value of an individual is calculated from arbitrary set action values, 
i.e.: –1 for increase of the distance to goal in every time step, –10 when ship is on 
the collision course (with an obstacle or shallow waters), +10 when she’s heading to 
goal without any obstacles on course, –100 when she hits an obstacle or run 
aground, +100 when ship reaches a goal and –50 when she depart from the deter-
mined restricted channel area in any other way, etc. 

Sum of gained fitness values defines the quality of helmsmen and a chance 
of passing his genes to next generation. Selection in real-time NEAT (rtNEAT)  
exchange genetic material gradually [5]. It means that population is not replaced as  
a whole but only the worst fit individuals are replaced by offspring of the best fit 
ones. That allows an evolution to look more naturally. An example of gradual ex-
change of genes in population is presented on figure 7. 
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A L G O R Y T M Y  S Z K O L E N I A  
W  C Z A S I E  R Z E C Z Y W I S T Y M   

W  N E U R O E W O L U C Y J N Y M   
S Y S T E M I E  W S P A R C I A  P O D E J M O W A N I A   

D E C Y Z J I  N A W I G A C Y J N Y C H   

STRESZCZENIE 

Artykuł przedstawia koncepcję wykorzystania zaawansowanych algorytmów uczenia się 
maszyn dla wsparcia podejmowania decyzji manewrowania okrętem w czasie rzeczywistym. Do 
tego celu wykorzystywane są ewolucyjne sieci neuronowe. W symulowanym modelu manewro-
wania okrętem sternik jest traktowany jako jednostka w populacji konkurencyjnych sterników, 
którzy poprzez wyczuwanie środowiskowe i procesy ewolucyjne uczą się jak prowadzić nawigację 
bezpiecznie po ograniczonych akwenach. 

Słowa kluczowe: 
sztuczna inteligencja, ewolucyjne sieci neuronowe, nawigacja morska, wyznaczanie tras, 
manewrowanie, sterowanie bezpieczeństwem okrętu, symulacja komputerowa.  


