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ABSTRACT

The paper deals with fatigue safety of structural elements made of orthotropic metallic
materials and subjected to non-zero mean stochastic loads. Multiaxial stationary stress is considered
under assumption that the power spectral densities of its components at a given point of the ele-
ment are known. A reduced stress, equivalent to the original stress in terms of fatigue performance
of the material, is determined. For this purpose the distortion energy strength theory and the theory
of energy transformation systems are applied. Hereby physical parameters of the material associated
with the stress components acting on the plane perpendicular to the orthotropy axis and those asso-
ciated with the remaining stress components are taken into account. As a result, the formula for
expected value of the fatigue safety factor in such a case is derived.
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INTRODUCTION

Most metals are composed of many microscopic crystals, or grains, each of
which has different properties in different directions and all of which are oriented
more or less at random. However, from an engineering point of view we are not
concerned with the anisotropy of single crystals as such, because single crystals are
not generally used in structural applications, but we are concerned with the anisotropy
of single crystals insofar as it causes anisotropy of polycrystalline engineering mate-
rials in which the fabrication process has caused all the individual crystals (or grains)
to be oriented similarly. This condition of non-random orientation of the grains is re-
ferred to as ‘preferred orientation’ [7] which enables the anisotropy to be taken into ac-
count in engineering calculations. In particular, even small amounts of longitudinal
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prestrain can cause a considerable difference in the longitudinal and transverse yield
stress, whereas cold rolling of a wide plate results in a lengthening and thinning so
that the anisotropy exhibits three mutually perpendicular planes of symmetry [7].
When the anisotropy possesses an axis of symmetry, it is said to be ‘ortho-
tropic symmetry’. In the present paper a fatigue safety of orthotropic metallic mate-
rials under multiaxial stochastic loads with non-zero mean values is considered. For
this purpose the Cartesian reference system Oxyz is introduced in such a way that its
z-axis is in common with the orthotropy axis of the material. The stress components are

denoted o; where i =X,Y,z,Xy,zX,zy. We assume that the physical parameters of the

material associated with the stress components o,,0,, and o, acting on the plane per-

pendicular to the z-axis, i.e. Young modulus E, tensile yield stress R, , shear yield stress
R

-compression, bending and torsion, are given. We also assume that the analogous pa-

es» Poisson’s ratio v and fatigue limits Z,.,Z .and Zg, under symmetric tension-

rameters E',R,Res,U,Z,,Zy0,Z;, associated with the stress components o,,o and o,
are known. For the sake of brevity, the stress components o, and o, will be dropped.

Fatigue design criteria vary from these for fatigue ‘safe life’, i.e. for structural
elements loaded below the fatigue limit, to those for limited fatigue life, where a certain
degree of fatigue damage accumulated in the material during the service life may be
accepted [4, 5]. The subject of this paper is the fatigue safety of structural elements
fabricated from orthotropic materials and designed for the fatigue ‘safe life’ regime.

FATIGUE SAFETY IN A REDUCED STRESS STATE

In the general case of multiaxial stochastic loads, the Cartesian stress com-
ponents at a given point of the element are determined as

ai(t)=a,+5i(t), (1)
where:
o; — mean value of i-th stress component;
o; — i-th zero mean stochastic process.

It is assumed that &; are deterministic quantities, and that &; are stationary

(in the wide sense) and stationary correlated processes of known power spectral
densities and cross power spectral densities.

In fatigue analysis of structural elements subjected to multiaxial stresses, usu-
ally an attempt is made to calculate a reduced stress equivalent in terms of fatigue
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performance to the original stress, and to deal with the uniaxial stress model. Here-
under the reduced stress will be expressed in the form of a periodic (in the mean-
square sense) normal stress in the direction of z-axis as a Gaussian process [5]

O, (t) =0, + asin(a)et + gz)) =

. . ) 2
=0, +q exp(ja)et)Jr a_ exp(— ja)et) )
where:
a — random amplitude;
j — imaginary unity;

0. — mean value (deterministic quantity);

¢ — random phase angle;

w, — circular frequency (deterministic quantity),
and

Q Zi.exp(j(l’), a;= aik
2j (3)

Ela )= Ela )~ - Bk -0

Here é{} denotes the expected value and ()* the complex conjugate.

In order to evaluate the fatigue safety of structural elements subjected to
uniaxial normal stress below the fatigue limit, it is convenient to define a fatigue
safety factor. As such, in [5, 6] the following quantity is used for asymmetric ten-
sion-compression

f =1 ), )

where
fd = —re s fS = —& (5)
are the partial safety factors related to amplitude o, and mean value o, of the

original stress.

Consequently, the expected value of the fatigue safety factor will be given by

Ef)= Elf i 11)= Lo ( _i]. ©

Efa}l Re

So, the criterion of fatigue ‘safe life’ under the reduced stress (2) reads

E(fl>1 %)
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In what follows the expected value of the amplitude and mean value of the
reduced stress will be sught with material orthotropy taken into account.

REDUCED STRESS

For the determination of reduced stress equivalent to the multiaxial stress
with components (1), a multiaxial fatigue strength theory must be applied. In the
case of multiaxial stress with constant principal stress directions, the Huber-Mises-
-Hencky (H-M-H) distortion energy theory is considered to be satisfactory [8].
However, if additionally the theory of energy transformation systems [2] with dissi-
pative energy as a scalar parameter is utilized, then the requirement of invariance of
the principal stress system can be avoided [5]. Since the spectral methods lead to
substantial savings of calculation time [10], the H-M-H theory and the theory of
energy transformation systems will be here implemented to time-varying stresses in
the frequency domain.

In the case of isotropic materials adaptation of the H-M-H theory to a multiaxial
stress with components oy,0;,0y, and o, leads to equation [1, 3]

1+v , 1+0][ » 2 2 2
3—Eae BETE oy +o; —o,0, +3(ny + 0 )] ©)

To account for the orthotropy of the material, we introduce the Young modulus
E’ and Poisson's ratio v' associated with the stress components o, and oy, by writing

1/2
I+v , 1+0" , 1+v , (140" 1+v
—0; = oy +——o0; — — | oyo;+
3E 3E' 3E 3E' 3E

(10)
1+0' 1+v
= Ot O
Hence
E(l+0) E(l+o)]"
03:—0'§+022— ——| 0.0+
E'(1+0) E'(1+v) (11)

E(1+0'
+3#+UU;O'§), -|—30'22X
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The time-domain Eq. (11) is not convenient for evaluation of parameters of
the reduced stress from spectral data. Therefore Eq. (11) will be transformed into the
frequency domain. For this purpose the correlation theory of stochastic processes
[11] will be used and Eq. (11) will be rewritten in terms of correlation functions of
the processes (1) and (2) as follows

E{[E +a*exp( jot, )+a* exp(jort,) ][E +a exp(jort,)+a_ exp(- jwetz)]}=

= 1+U E{[_ ][a +5,(t,) ]}+E{[o- +5.( )][EZ+5-Z(t2)]}+
—[E,(HU')TZIAE G, +6.( ][0' +5,(t, )]}-i-
B e s 50, <5, 03t + 5 0+ 5]

(12)

However, in analysis of fatigue safety of orthotropic materials not only the
Young modulus E" and Poisson's ratio v’ but also the yield stress R'e, R;s and fatigue

limits Z,, (or ZQOJZ;O should be taken into account. In other words, Eq. (12) should be

modified to comply with the yield stress R,, R, and fatigue limits Z,.,Z, as follows

E{[a +a’exp(— joot )+a’ exp(jaot, )][Ee +a, exp(jot,)+a exp(- jot, )]}:

_ 1;; { 5+ % - )} [%EX + ; &, (t, )}+
+E{[O' +6:(t, )][ 5. +5,t, )]}
_{M}”Z E{%@ +§%&:(tl)} 7, + c}z(tz)]}+ (13)

+3 E,(l +0) IAE{R—?SEXV + Zg G, )} [R—?Sﬁxy + ;5" Gyt )} +

R Z' Res SO

es SO

4(191) 2012 87



Janusz Kolenda

In accordance with Eqs (3), Eq. (13) becomes for t, —t, =7

Go + % Ef? foxp(j@ur)+ exp(- jour)]=

- E%{(i—a} {ZZ J ke, (r)] L5, ()

&) R feea)
(B [ 22 i 0] et a9
o )= 5.
e Eé{{ézft(faéf 2} ) Y
K o

are the autocorrelation functions of the processes &,,5,,0,,,0, and

K,..(r)=EG:(t)5,0)] (16)

is the cross correlation function of the processes &, and &

Fourier transformation of Eq. (14) yields

5:6l0)+ B [olo-a)+ do+a)l-
={E(1+U')(R?axj2+af{lz(l+dg 1/2&155 +3 E(1+U')(ReyJ2+3O' }5((,0)
E

R E(l+o

+ El+) Zj S, ()+5, (w)_[

rc

(1+0)
E'(1+v)
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S, (a)),Ssz (w),SUXy (a)),SUZX () — power spectral densities of the processes 0410,,0y,
and o,,;

ngaz (a)) — cross power spectral density of the processes o, and o, ;

— Dirac’s delta function.

In order to make use of the theory of energy transformation systems, Eq.
(17) must be integrated over the whole frequency range [5] which gives

. 2 NTl/2
2+ Lef?) E(l+u)[R_?EX) +52{E(1+u)} R, _

| E'(1+0) R_;O-XJZ "

2 2
E(1+0")( Res — o, E(+0)(zZ.) ¢
3 —= 3 =1 1S d
+ Ev(l_’_u)(R O-XY] + O-ZX + E'( ) Zrc __[O Oy (a)) o+

 [s., (w)dw{MT/z% [0, (@)l +

E'(l+u) e

(18)

2 o0 o0
=0 IS, (e)do+3 (S, (0)de
2] Jsnotoea.

—00

Hence

, 2 N2
Eez:E(lﬂ))[R_?E] +52{E(1+u)} R,

£ E(1+0)

(19)
E(l+v)(R ’
+3 Lﬁaxyj +352
RES

221 L] E(l+0)[ Zy e K
E{a }2{E'(1+U)[Zj _I Sox(a))da)Jr J.Saz(a))da)Jr

—00

_[ E'((ll-:lf)’))} % I So.0, (a))da) +3%[Z—?‘)j I Sny (a))da) + (20)

rc _o Zso

+3 T Sa., (a))d a)}

—0o0

—00

4(191) 2012 89



Janusz Kolenda

The amplitude of Gaussian process (2) follows Rayleigh distribution [11],

so that
Y 2"/2r[1+ )" k=12,.. (21)
where:
S, — standard deviation of the amplitude a;
I’ — gamma function.
In particular [9],
Efa}=(0.57)"?s,; (22)
Efa?|=2s2. (23)
Equating the right-hand sides of Eqs (20) and (23) gives
El Zrc ’ °°
Se = i — o)+ IS o)o+
(1 + U) Z
N2 ©
- M Z—,“’J‘SUG (0)dw + (24)
E'(l+v) Zpg = 7

FATIGUE SAFETY FACTOR OF ORTHOTROPIC MATERIALS
UNDER STOCHASTIC LOADS

Having determined the parameters of reduced stress at a given point of
structural element made of orthotropic material and subjected to non-zero mean
stochastic loads, the following formula for expected value of the fatigue safety factor

can be used
A Z o,
E{fl=——"T | 1-—51, 25
) (o.sﬁ)l/zse( Re] @)
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where :

S, — the standard deviation of reduced stress amplitude defined by Eq. (24);

0, — the mean value of reduced stress calculated as

E(l+0')| (R * (R ’
= +v e — es — =2
7 {E'(lﬂ)) (Re “XJ [Res “ij o

N2
+3E§X_%{E(l+u)} __
(5

Consequently, the criterion (8) of fatigue ‘safe life’ of orthotropic materials
in the considered load case can be expressed in the form

1 / 1 _
2_(0'5”)1 %S, +o-Ge <l 27)

rc (5

SUMMARY

In fatigue analysis, the conventional distortion energy strength theory can be
utilized when the principal stress directions are constant. To avoid this requirement, in
the author’s papers the theory of energy transformation systems with dissipative energy
as a scalar parameter has been employed which enabled the Huber-Mises-Hencky
distortion energy theory to be used. The same approach is applied in the present paper
to structural elements made of orthotropic materials and subjected to non-zero mean
stochastic loads. As a result, the formula for expected value of fatigue safety factor in
such a case is derived under assumption that the material parameters and power spec-
tral densities of stress components at a given point of the element are known.
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ORTOTROPIA MATERIALU W ANALIZIE
BEZPIECZENSTWA ZMECZENIOWEGO
PRZY OBCIAZENIACH STOCHASTYCZNYCH

STRESZCZENIE

Artykut dotyczy bezpieczenistwa zmeczeniowego elementoéw konstrukcyjnych wykonanych
z ortotropowych metalicznych materiatow i poddanych obcigzeniom stochastycznym o niezerowych
wartosciach $rednich. Rozpatrywany jest wieloosiowy stan naprezenia przy zatozeniu, Ze znane
sq gestosci widmowe mocy sktadowych stanu naprezenia w danym punkcie elementu. Zdefinio-
wano naprezenie zredukowane, rbwnowazne oryginalnemu naprezeniu w sensie wytrzymato$ci
zmeczeniowej materiatu. W tym celu wykorzystano hipoteze energii odksztatcenia postaciowego
i teorie systemdw transformujacych energie. Uwzgledniono przy tym fizyczne parametry materiatu
odnoszace sie do naprezen dziatajgcych na ptaszczyznie prostopadtej do osi ortotropowej symetrii
materiatu oraz parametry odnoszace sie do pozostatych sktadowych stanu naprezenia. Wyprowadzo-
no wzdr na warto$¢ oczekiwang wspdtczynnika bezpieczeristwa zmeczeniowego w takim przypadku.

Stowa kluczowe:
bezpieczenstwo zmeczeniowe, obcigzenia stochastyczne, materiaty ortotropowe.
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