Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The process of welding has dynamic character and is related with the local change of the internal energy E of welded system and can be defined by general dependence between intensive .j and extensive .j parameters. The knowledge of the run of thermo-dynamical process under welding indicates on the possibility of active modelling of weldability and the control of welding process: .j = .E/..j. Hence, these process can be enhanced by mathematical modelling and numerical analysis of weldability models of, i.e. welding processes of material behaviour in welding and the strength of welded structures. The main attention is focused on the assessment of susceptibility of materials under defined welding conditions using fracture mechanics parameters. The analysis is based on the normalised parameters such as: ./.c, KIth/KIC, as a measure of the susceptibility of materials in welding process. The deformation process and fracture parameters calibrations are influenced by constraint; hence the importance of determining the deformation behaviour and fracture parameters as a function of constraint. Furthermore, there established analytically the condition of welding process in mismatched weld joints for strength equal to base metal. Finally, same analytical examples which present new capabilities of weldability estimates and mechanical properties of mismatched weld joints are presented.
Czasopismo
Rocznik
Tom
Strony
44--51
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Faculty of Mechanical Engineerig, University of Technology and Life Science, Prof. S. Kaliskiego 7 85-763 Bydgoszcz, POLAND, ranatow@utp.edu.pl
Bibliografia
- 1. Radaj D.: Welding residual stresses and distortion. Calculation and measurement. DVS-Verlag. 2002.
- 2. Lingren Ł. E.: Numerical modelling of welding. Comput. Methods Appl. Mech. Eng. 195. 2006.
- 3. Goldak J. A. and Akhlaghi M.: Computational welding mechanics. Springer. 2006.
- 4. Dowden J. M.: The mathematics of thermal modelling. London. 2001.
- 5. Buchmayr B.: Modelling of weldability – needs and limits. Mathematical Modelling of Weld Phenomena 2. Book 594. Edited by H. Cerjak, H. Bhadeshia. The Istitute of Materials. London. 119-137, 1995.
- 6. David S. A., Babu S.S.: Microstructure modelling in weld metal. Mathematical Modelling of Weld Phenomena 3. Edited by H. Cerjak. Book 650. The Institute of Materials. London. 151-180, 1997.
- 7. Bhadeshia H.: Models for the elementary mechanical properties of steel welds. Mathematical Modelling of Weld Phenomena 3. Edited by H. Cerjak. Book 650. The Institute of Materials. London. 229-282, 1997.
- 8. Hrivnak: Grain growth and embrittlement of steel welds. Mathematical Modelling of Weld Phenomena 2. Edited by Cerjak H. Materials Modelling Series. Book 594. London., 1995.
- 9. Bhadeshia H.: Microstructure modelling in weld metal. Mathematical Modelling of Weld Phenomena 3. Edited by Cerjak H. Book 650. The Institute of Materials. UK. 249-284, 2007.
- 10. Murawa H., Luo Y. and Ueda Y.: Inherent strain as an interface between computational welding mechanics and its industrial application. Modelling of Weld Phenomena Vol. 4. Edited by H. Cerjak. Book 695. 597-619, 2007.
- 11. Ranatowski E.: Some remarks on stress state at interface of the mismatched weld joints. Mis - Matching of Interfaces and Welds. Editors: K. H. Schwalbe, M. Koçak, GKSS Research Center Publication, Geesthacht, FRG, ISBN 3-00-001951-0, 185-196, 1997.
- 12. Landes J. D. et al.: An application methodology for ductile fracture mechanics. Fracture Mechanics. ASTM STP 1189. 2001.
- 13. Schwalbe K. H.: Effect of weld metal mis-match on toughness requirements: some simple analytical considerations using the Engineering Treatment Model (ETM). International Journal of Fracture. No 1, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0041-0006