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Paper presents method of Continuous Wavelet Transform (CWT) used in process  

of hydroacoustics signals analysis. The continuous wavelet transform can be used to produce 

spectrograms which show the frequency content of signals as a function of time. Such 

representation is very useful during analysis of non-stationary signals which can be acquired 

during passive measurements of hydroacoustics field of moving ships. In paper there is 

described the continuous wavelet transform analysis method by presenting the mathematical 

background of CWT and its properties. At the end some examples of hydroacoustics signals 

analysis and its brief descriptions was shown. 

 

 

INTRODUCTION 

It is known from Fourier theory that any signal can be expressed as the sum of a series 

of sines. This sum is also referred to as a Fourier expansion. The big disadvantage of a Fourier 

expansion is that it has only frequency resolution and no time resolution. This means that we 

might be able to determine all the frequencies present in a signal but we do not know when 

they appear. To overcome this problem several solutions have been developed which are more 

or less able to represent a signal in the time and frequency domain at the same time [5].  

The idea behind these time-frequency joint representations is to cut the signal of interest 

into several parts and then analyze the parts separately. It must be noticed that analyzing  

a signal this way will give more information about the when and where different frequency 

components appear, but it leads to a fundamental problem as well: how to cut the signals? The 

problem here is that cutting the signal into short block cause that we have results with hi-

resolution in time domain but in very low-resolution in frequency domain and cutting signal into 

long block cause that we have results with low-resolution in time domain and hi-resolution in 

frequency domain.  
The underlying principle of the phenomena just described is due to Heisenberg’s 

uncertainty principle, which, in signal processing terms, states that it is impossible to know 
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the exact frequency and the exact time of occurrence of this frequency in a signal. In other 
words, a signal can simply not be represented as a point in the time-frequency space. The 
uncertainty principle shows that it is very important how one cuts the signal [5].  

The wavelet transform or wavelet analysis is probably the most recent solution to 
overcome the shortcomings of the Fourier transform. In wavelet analysis the use of a fully 
scalable modulated window solves the signal-cutting problem. The window is shifted along 
the signal and for every position the spectrum is calculated. Then this process is repeated 
many times with a slightly shorter (or longer) window for every new cycle. In the end the 
result will be a collection of time-frequency representations of the signal, all with different 
resolutions. Because of this collection of representations we can speak of a multiresolution 
analysis. In the case of wavelets we normally do not speak about time-frequency 
representations but about time-scale representations, scale being in a way the opposite of 
frequency, because the term frequency is reserved for the Fourier transform [5]. Because the 
frequency is much more intuitive for people to understand, there is method to recalculate 
scale into such called pseudo-frequency which corresponds to the center frequency of wavelet 
represented in given scale. 
 

1. ANALYSIS METHOD 

Like the Fourier transform, the continuous wavelet transform uses inner products to 
measure the similarity between a signal and an analyzing function. In the Fourier transform, 

the analyzing functions are complex exponentials, tje . The resulting transform is a function 

of a single variable, . In the short-time Fourier transform, the analyzing functions are 

windowed complex exponentials, tjetw )( , and the result in a function of two variables. The 

STFT coefficients, ),(F  represent the match between the signal and a sinusoid with 

angular frequency  in an interval of a specified length centered at  [5, 6]. 

In the CWT, the analyzing function is a wavelet, . The CWT compares the signal to 

shifted and compressed or stretched versions of a wavelet. By comparing the signal to the 
wavelet at various scales and positions, we can obtain a function of two variables. 

The continuous wavelet transform is defined as follows [2, 6]: 
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As seen in the above equation, the transformed signal is a function of two variables,  

and s , the translation and scale parameters, respectively. Factor 5.0s  is for energy normalization 

across the different scales. )(t  is the transforming function, and it is called the mother 

wavelet.  
The term wavelet means a small wave. The smallness refers to the condition that this 

(window) function is of finite length (compactly supported). The wave refers to the condition 
that this function is oscillatory. The term mother implies that the functions with different 
region of support that are used in the transformation process are derived from one main 
function, or the mother wavelet. In other words, the mother wavelet is a prototype for 
generating the other window functions [1, 2].  

The term translation is used in the same sense as it was used in the STFT; it is related to 
the location of the window, as the window is shifted through the signal. This term, obviously, 
corresponds to time information in the transform domain. However, we do not have  
a frequency parameter, as we had before for the STFT but instead, we have scale parameter.  
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The parameter scale in the wavelet analysis is similar to the scale used in maps. As in 

the case of maps, high scales correspond to a non-detailed global view (of the signal), and low 

scales correspond to a detailed view. Similarly, in terms of frequency, low frequencies (high 

scales) correspond to a global information of a signal (that usually spans the entire signal), 

whereas high frequencies (low scales) correspond to a detailed information of a hidden pattern 

in the signal (that usually lasts a relatively short time). 

There is clearly a relationship between scale and frequency. Recall that higher scales 

correspond to the most ‘stretched’ wavelets. The more stretched the wavelet, the longer the 

portion of the signal with which it is being compared, and therefore the coarser the signal 

features measured by the wavelet coefficients (fig. 1). 

 

 
Fig. 1. Meaning of scale in wavelet transform [1, 6] 

 

To summarize, the general correspondence between scale and frequency is [6, 4]: 

Low scale s  Compressed wavelet  Rapidly changing details  High frequency , 

High scale s  Stretched wavelet  Slowly changing, coarse features  Low frequency . 

 

While there is a general relationship between scale and frequency, no precise relationship 

exists. Users familiar with Fourier analysis often want to define a mapping between a wavelet 

at a given scale with a specified sampling period to a frequency in hertz. A way to do it is to 

compute the center frequency, cF , of the wavelet and to use the following relationship [4]. 
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where: s  is a scale, sT  is the sampling period, cF  is the center frequency of a wavelet in Hz, 

aF  is the pseudo-frequency corresponding to the scale a, in Hz. 

The idea is to associate with a given wavelet a purely periodic signal of frequency cF . 

Shifting (translation) a wavelet simply means delaying (or advancing) its onset. 

Mathematically, delaying a function )(tf by k  is represented by )( ktf  (fig. 2) [3, 6]. 
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Fig. 2. Meaning of translation in wavelet transform [6] 
 

Lets look at CWT as a window transform. In Short-Time Fourier Transform, the STFT 
is described as a windowing of the signal to create a local frequency analysis. A shortcoming 
of the STFT approach is that the window size is constant. There is a trade off in the choice of 
window size. A longer time window improves frequency resolution while resulting in poorer 
time resolution because the Fourier transform loses all time resolution over the duration of the 
window. Conversely, a shorter time window improves time localization while resulting in 
poorer frequency resolution [6].  

Wavelet analysis represents the next logical step: a windowing technique with variable-
sized regions. Wavelet analysis allows the use of long time intervals where you want more 
precise low-frequency information, and shorter regions where you want high-frequency 
information (fig. 3) [1, 6]. 

 

 
Fig. 3. Partition of time-frequency space in a) STFT b) CWT 

 

The most important properties of wavelets are the admissibility and the regularity 
conditions and these are the properties which gave wavelets their name. It can be shown that 
square integrable functions )(t  satisfying the admissibility condition [5]: 
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which can be used to first analyze and then reconstruct a signal without loss of information. In 
(3) )(  stands for the Fourier transform of )(t . The admissibility condition implies that 

the Fourier transform of )(t vanishes at the zero frequency, i.e. [5]: 
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This means that wavelets must have a band-pass like spectrum. This is a very important 
observation, which we will use later on to build an efficient wavelet transform.  

A zero at the zero frequency also means that the average value of the wavelet in the 
time domain must be zero [5]:  

 

0)( dtt

 

(5) 

and therefore it must be oscillatory. In other words, )(t  must be a wave. 
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2. RESULTS OF RESEARCH 

Below there are presented results of calculation continuous wavelet transform for ship 

of radio-electronic reconnaissance. Measurements were conducted on Polish Naval Acoustics 

Measurement Range. Hydrophones were positioned on the depth of 20 m and signals after 

analog to digital conversion were transmitted to the recording system. Continuous wavelet 

transform was calculated using biorthogonal wavelets in application Matlab®. Fig. 4 Shows 

time series of analyzed signal and results of calculation CWT in scale from 1 to 256. To 

shows how is looking CWT in selected band of frequency during research the scale was 

changed. According to above it is possible to receive CWT in frequency band: 

of about 5Hz to 30Hz (scale: 132 to 550 with signal down sampling coefficient 10), 

of about 30Hz to 100Hz (scale: 63 to 260 with signal down sampling coefficient 5), 

of about 100Hz to 1kHz (scale: 15 to 210 with signal down sampling coefficient 2). 

Results of this calculation are shown on figures 5 and 6. Because the measured ship was 

going through measurement range with working depth echosounder it was interesting to 

calculate CWT for moment where echosounder is well heard. Result is presented on fig. 7 

where the moment of sending ping by echosounder is very well visible. Because during 

analysis of hydroacoustic signals from such measurement it is interesting the moment when 

main diesel engine are above the hydrophones the same calculation were made in this 

research (fig. 8).  

 

 

 

Fig. 4. Time series and results of CWT calculation 
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Fig. 5. Results of CWT calculation for frequency band about 5Hz to 30Hz 

 

 
Fig. 6. Results of CWT calculation for frequency band about 100Hz to 1kHz 
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Fig. 7. Results of CWT calculation in moment of depth echosounder working 

 

 

Fig. 8. Results of CWT calculation in moment of diesel engines working 
 

3. SUMMARY 

Paper presents application of continuous wavelet transform to analysis of hydroacoustics 

signal acquired during passive measurements. The wavelet transform is a relatively new 

concept (it is about 10 years old), but yet there are quite a few application of them but till now 

there is now information about using them in hydroacoustics. Theoretically continuous 

wavelet transform is perfect in application of analyzing hydroacoustics signals which mostly 
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are non-stationery signals. This paper shows that its usefulness is not only theoretical but also 

practical. As it was shown results of calculations and possibilities of methods gives to 

hydroacoustics new tools in processing and analyzing signals. However it must be noticed 

that we must still learn how to properly interpreted the received results of calculations.  
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