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Some important details of the Backscatter Effective Cross-Sections obtained for random 

scattering structures (like trabecular bone) are explain by comparison with the results 

obtained by means of the simplified theoretical model. The simplified model was (establish) 

and justified on the basis of the structural analysis of the results obtained for exact model  

of the field scattering on complex structures. The simplified model is commonly used in 

description of the scattering on the regular structures like crystal. 

Comparison with experimental results for the trabecular bone is also presented. The 

results allowed to conclude that crystallographic methods could be potentially useful for 

extracting characteristic features of trabecular bone. 

 

 

INTRODUCTION 

 The ultrasound signals being scattered in trabecular bone contain information on the 

properties of the bone structure, and hence the analysis of these signals could be useful in 

assessment of the microscopic architecture of the bone. The Wear’s [1] work contains the 

review of methods and problems of bone sonometry. It has been demonstrated that the use of 

the backscattering models enabled an assessment of micro structural characteristics from 

experimental data. 

 In this approach the model of trabecular bone was proposed that consisted of finite 

length, elastic, cylindrical elements of varying diameters and orientation. The physical 

properties of the cylinders were assumed similar to those of a bone tissue. The multi-element 

structure of the bone model was similar to the architecture of the trabecular bone [2] including 

statistical variation of trabeculae size and characteristic dimensions of the bone structure. 

The field scattered on the bone model was evaluated by solving numerically the integral 

form of the Sturm-Liouville equation that describes scalar wave in inhomogeneous, attenuating 
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medium. For the calculated scattered fields the Backscatter Effective Cross-Sections (BECS) 

coefficient was determined in the frequency range up to 3 MHz. 

It was shown that some characteristic dimensions of the structure could be extracted 

from the backscattered echo signals when analyzing the frequency dependence of the 

backscattering coefficient. We have found that the monotonic increase of the BECS with 

frequency was disturbed by characteristic peaks. Existence of BECS peaks for the particular 

frequencies was explained  applying the Laue’s equations that state the conditions for incident 

waves to be diffracted by a crystal lattice [3]. The low frequency peak at 0.75 MHz 

corresponded to 1 mm mean distance between thick trabeculae and its existence was 

confirmed experimentally. 

We have shown that crystallographic methods could be potentially useful for extracting 

characteristic features of trabecular bone, despite the fact that analyzed bone structure 

exhibited features much more randomized than those of the crystals and scattering is an 

random process. 

 

1. MEDIUM DESCRIPTION AND SCATTERING EQUATIONS 

The Lame’s equation for longitudinal (volumetric) disturbances in non-homogeneous, 

isotropic, and stationary medium given in [4] can be generalized for lossy medium and 

rewritten in space-Fourier frequency domain as Sturm-Liouville equation [5] 
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where ),(),( tPFnCC xx ; ),( tPP x  is the normalized stress; 
0PPP ,

0P  is the reference 

pressure; )(xgg , )(xcc are respectively: normalized density and speed of the longitudinal 

(sound) waves, ),( tx are normalized coordinates in space and time, whereas is the normalized 

nabla vector operator, symbol:  denotes scalar product, is the scalar Laplacian. The 

normalization was performed as follows:
0ggg , 

0ccc , xx 0K , tt 0
, 

0K . The dimensional variables and operators are accented; 0g , 
0c  are density and 

speed of sound in reference medium respectively (in our case - volume dominant reference). It 

means that 1c  and 1g  for reference medium. The characteristic wave number
0K and 

pulsation 
0
are restricted by the relation: 

000cK . 
00 2 T , where

0T is reference time 

(e.g. Time window). In homogeneous regions of the medium ),()( nana x ; ),( na x  denotes 

spatial distribution of the small signal coefficient of absorption, )(0 na  is the absorption 

coefficient of the reference medium. 

 We assume that reference homogeneous medium surrounds L regions 
l
 of space. The 

regions are bounded by surfaces 
ls  Ll ,...,1 . Each region 

l
 is filled with homogeneous 

medium and its normalized density 1lg , as well as normalized speed of the longitudinal 

waves 1lc . The multiple-theory sum of the 
l
 sets describes the structure being submerged 

in reference medium. Thus spatial distributions of sound speed, density and absorption 

coefficient have a form: 
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where d… denotes step rise of material parameters; ( )l l
 is the characteristic function 

of
l
, 1 for 

lx , 0  for lx , 21  for 
lsx . For V and Q, we heave 
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Vector )(xe l
is externally normal to

ls in lsx  and is unit. Because ( ) ( ): , 1,...,l l ls l Le x e x e  

is a general field of the unit vectors being normal to the structure.  

For the assumed model of structure of medium the Eq. (1) was transformed into set of 

the integral equations [8] that describe scattering on potentials V and Q  of the structure.  

 

 

s

dsBrG

dCrGCC

)()(Q)),((

)()(V)),(()()( 0

xxxx

xxxxxx

 (4) 

 

s

dsBrG

dCrGBB

)()(Q)),((

)()(V)),(()()( 0

xxxx

xxxxxx

 (5) 

 

where )4)(exp(),( rrniknrG , '),( xxxxrr , ),()( 00 nCC xx  is a solution of  Helmholtz 

equation in reference medium (incident field), )),,(()),(( nrGrG xxxx  is the Green function of 

the Helmholtz equation, 0 0B Ce , ),()(),( nCnB xxex , GrG r)()()( rexe , rr rre )( . 

We solve the Eqs. 4, 5 numerically. The developed solver enables to find the solution 
0 0;E C C B B  – scattered field in the form 
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where indices j = 1,2,3… number the orders of  scattering, index m numbers the scattering 

substructures of the full structure. Lm denotes the set of the indices of the elements 
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constituting the m-th substructure. The sequence of the summation in Eq. (6) may be changed. 

That means that the solver enables the multi-scattering decomposition of scattered field with 

respect to the contributions from substructures taking into account the backscatter coefficients 

in successive (I,II,III) orders of the scattering. The results of the structural analysis of the field 

scattered on complex structures (also random), e.g trabecular will be presented later. 

 

2. TRABECULAR BONE MODEL 

 The skeleton of the model of trabecular bone structure, applied in scattering field 

calculations, is presented in Figure 1: (a) left. One of skeleton structures parallel to the x-z 

plane (horizontal in respect to the incident field) is shown in Figure 1: (a) right. The cylinder 

with diameter  and length d was adopted as the model of trabecula and bar. Each segment of 

the skeleton is the axis of cylinder. The skeleton was obtained randomly (see. [5]). By the 

variation of the probability distribution functions and their parameters we can create different 

statistical properties of the physical and geometrical parameters of the structure. The structure 

is immersed in absorbing fluid filer. 

 

 
 

Fig 1. (a) left: full skeleton of the trabecular bone model; right: one of horizontal substructures  

in the skeleton; (b) the cross-section of the real trabecular bone structure 

 

3. RESULTS OF THE EXACT MODEL 

 At the beginning the regular structure was constructed of the cuboids of dimensions 2 mm 

in the y direction and 1 1 mm in the x and z directions. For the nodes displacement the 

uniform probability was assumed in range (–0.15; 0.15) mm. Also uniform probability for 

elimination of some elements from the structure were used. Values of sound speed and 

densities (4000 m/s and 2000 kg/m
3
 with 5% standard deviation) of each trabecula were 

selected basing on Gamma distribution. For trabeculae, in y direction and in horizontal planes, 

mean values  = 0.1 and 0.08 mm with deviations 20% and 25% respectively, were 

assumed. For surrounding medium (marrow) as well as surrounding space g0 = 1000kg/m
3
, 
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c0=1500m/s. The absorption parameters for fluid filer was 1= (0.23;1.15;2.3)·10
-4 

Np/mHz, 

2)( 01 ncna . Total number of elements (trabeculae) was 443. Total dimensions are:  

[–4;4] mm in x, [–4;4] mm in y, [0;6] mm in z direction (384 mm
3
).  

 The unit plane wave was assumed as the incident field ))(exp(0 zikC 0z , ]3,5.0[  MHz 

with step 0.0333 MHz. Dimensionless frequency is 90,...,16,15n . 

 

3.1 SCATTERING FIELD DISTRIBUTIONS 

 Exemplary distributions of scattering fields for the absorption parameter 4

1 103.2  in 

subsequent orders of scattering and for the selected frequencies are shown in Fig 2.  

 

 
Fig. 2. Distributions of fields in subsequent orders of scattering in rows: I, II, III, while in function  

of frequency from 0.5 MHz to 3 MHz they are shown in columns. The axis are in mm 

 

 Grey scale refers to the logarithmic scale of values. Contour of the scattering structure 

and its location is shown by white rectangle whereas white narrow indicates direction  

of incident wave.  

 

3.2 BACKSCATTER COEFFICIENTS 

 We define substructures: horizontal (denoted by ‘h’) as a set of all trabeculae that are 

situated in planes being parallel to the x-z plane, and vertical (denoted by ‘y’) as a set of all 

trabeculae which are parallel to the y axis. 

 In Figure 3 SI, SII and SIII are the BECS coefficients, that were obtained in subsequent 

orders of scattering (first-I, second-II, third-III) and in function of frequency . The influence 

of the absorption of the fluid filer on the effective cross-section in each order is presented. 

The plot p1 correspond to the last 1=0.23·10
-4

, p2 to the middle 1=1.15·10
-4

 and p3 to the 

1=2.3·10
-4

 value of absorption parameter. Square roots IS , IIS , IIIS were applied for 
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better representation. Moreover, the square root from the effective cross-section is a proper 

norm of the signal received by transducer placed close to the scatter.  

In Figure 4. the contribution of substructures y and h to backscatter effective cross-

sections for the case p1 in subsequent orders of scattering is presented.  

 

 

Fig. 3. BECS decomposition in respect to scattering order, first- SI, second-SII and third-SIII.  

Plots p1, p2, p3 corresponds to the low-p1, middle-p2 and extreme-p3 value of absorption parameter. 

Frequency in MHz 

 

Fig. 4. Contribution of substructures h and y in subsequent orders of scattering as well as in respect to 

frequency (in MHz) for the case p1 of the absorption parameter 

 

In the numerical calculations the SIy, SIh and SI=SIy SIh – BECSs for the fields 

scattered on the substructures y and h subsequently and total BECS in the I-st order of 

scattering were determined separately. The same procedure was applied for higher orders of 

scatering (II, III). The symbol  denotes summation with interferences of the fields scattered 

by diferent substructures. However  – ordinary summation of the scattered powers.   

 

4. PROBLEM FORMULATION 

 In Fig. 3 we observe several peaks in the run of IS  plots. Some of them are repeated 

in the same positions in higher order of scattering. In description of the multi-scattering 

process I II IIIS S S S  the component SI is dominate and the field scattered in the I-st 

order impacts the results in higher order. Then we restrict our investigations to the ‘peaks’ 

phenomenon in the I-st order of scattering and they bases on the IS properties. In Fig. 5 the 

above mentioned peaks are marked by vertical dashed arrows.  



Volume 14 HYDROACOUSTICS 
 

 261

 
Fig. 5. Structural analysis of the scattered fields. Diagram of contributions  

of the selected substructures y, h in creation of the SI – I-st order BECS 

 

 The scattering on the random structure is a stochastic process. Therefore we ask: Are the 

marked frequencies and the peaks in Fig. 5 are specific or accidental (randomly distributed) 

for the scattering structure and scattering process? Do the marked peaks change the position  

if the distribution of the model parameters (elements position) change? 

We have found by numerical calculations – for other sets of random parameters of the 

bone model – that some one of them may disappear. However, if they remain  then they occur 

for the same frequency if the averages of the spatial distributions of the element positions in 

the structure are the same.  

 Fig. 5 shows participations of the selected substructures y and h in the creation of the 

field scattered in the I-st order. However the fields scattered by y and h structures are 

comparable (in the norm with factor ~0.5) the contribution of the field scattered on h structure 

to the IS is smooth and over eight times smaller then contributions from y substructure.  

The vertical structure y is dominating and only this structure forms the peaks that will 

be taken into consideration. This observation enables to create a simplified (averaging) 

analytical model. 

 

5. SIMPLIFIED MODEL AND PROBLEM SOLUTION 

 Performance: (1) eliminating h substructure (interconnections), (2) averaging geometrical 

and material parameters of the y-structure elements (vertical trabeculae), (3) averaging the 

distances ,z ld , ,x ld  between subsequent elements  along z and x axes  

 

 (7) 

 

and, (4) applying Neumann-Born approximation in calculation of the scattered field; we 

obtain, simplified regular structure like crystal with cubical elementary cells and square lattice 

parallel to z-x plane with lattice constant dz = dx = d = 1 mm and analytical description of the 

scattered field – see Fig. 6. 

, ,x zx l z ll l
d d d d d
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Fig. 6. Model simplification: left – full bone model (random);  

right – simplified model (regular), dz = dx = d = 1 mm 

 

 

Fig. 7. Example of the spatial field distribution of the field scattered on the single element  

with D = 2 mm and  = 0.1 mm; Incident field – single plane wave with  = 1.875 MHz 

 

 For determination of the C(r, ) – total field scattered in the simplified bone model we 

apply methods commonly used in the summation of the properties of the individual elements 

creating regular multi-element structures – especially methods used in crystallography. 

Neglecting detailed discussion we obtain  

 
1 , ,

0.5
( , ), ( , ), ( , ),

0.5

sin

sin
e l

L

l

j j j

j j

i

j z x y

L d

d
C Cs Cs

k q r
k -q

r r r
k -q

 (8) 

where Cs(*) – spatial distribution of the field scattered on the single element (Fig. 7), ( , )r  – is 

the vector of the space Cartesian coordinates expressed by spherical coordinates. The angle  

is measured respect z axes ( ,  – scattering angles). l s z z x z y y yd l d l d lr r e e e is the 

vector coordinates of the lattice nodes (in our case lz = 0,…,Lz – 1 = 6, ; lx = 0,.., Lx – 1 = 8; 

ly = 0,.., Ly – 1 = 3), q is the wave vector of the incident wave, k is the wave vector of the 

scattered wave,  is the frequency.  

    Model 

simplification  
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 The magnitudes of the interference amplifications of the scattered fields are described 

by the last factor in Eq. 8. The analyzis leads to the conclusion that the main directions and 

frequencies of the interference amplification are determined by the equations (Laue [3]) 

 

                                                                                                            m, l, s – integer (9) 

 

 02k ck q             (elastic scattering)  

where , ,z x y1 1 1 are unit vectors from inverse lattice in the Fourier space. The Fig. 8 gives 

geometrical interpretation of Eq. 9 and the vectors w.  

                                02k ck q
 

Fig. 8. Ewald construction-geometrical interpretation of Eq. 9 for elastic scattering.  

Examples of the two permissible scattering vectors k 

 

 Accordingly to the relative configuration determined by the incident plane waves (along 

z axes) and space orientation of the model lattice (Figs 1 and 6 Right) the set of Eq. 8 can be 

written as 
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and resolve respect . We  obtain the main frequencies of the interference amplification of the 

backs scatered fields (alsso transmited),  
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 The cases m < 0 corresponds to the backscattering. For m = 0 it mast be  = 0, l = s = 0 

(k = q) we obtain forward scattering-transmission. The last factor in Eq. 8 don’t modulate the 

frequency dependent scattering coefficients. They are determined by the single element 

scattering properties (field Cs( ).  

 Using formula Eq. 8 we determined SiIS  – BECS for simplified model (with absorption). 

The SiIS  plot is shown on Fig. 9 (left down). The positions of their frequencies peaks given 

by Eq.11 are collected in matrices on Fig. 9 (right).  

 As we see the simplified bone model very good predicts and explains (except for 

frequency 2.67 MHz marked by?) the positions of the peaks occurring in the exact random 

model – IS  plot on Fig. 9 (left up).  

 

          

Fig. 9. Comparison of the models results. Explanation of the frequency peeks positions occurring  

in exact random model – SI( ), on the basis of the results of simplified (crystallographic) model SISi( ) 

 

6. COMPARISON WITH EXPERIMENT 

 The experimental data was copied from the paper presented in JASA [6].  
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Fig. 10. The juxtaposition of the experimental results – gray rectangle, with the results of the full 

random bone model. The frequency axes are the same for both presentations 

For both presentation we rewrite below descriptions of the experimental results: 

• Average experimental – based backscatter coefficient for the 19 specimens;  

– Autocorrelation model (error bars = standard error). 

 

 The experimental spectral line (around Exper) in the linear value scale is more clear and 

similar to the spectral line (around 1,0) obtained in theoretical or numerical models of the 

bone scattering.  

There was no experimental data in the higher frequency band. Also the probe diameter 

in the currently applied experiment configurations was to small for the detection of some 

frequencies e.g. 21.  

 On the basis of the presented theoretical results we conclude that corresponding to the 

experimental peak at frequency Exper the experimentally equivalent ‘lattice constant’ – or 

more precisely speaking-mean distance between long trabeculae is equal dExp = 1.07 mm, 

while in our models d = 1 mm.  

 

7. CONCLUSIONS 

 The developed algorithm enables the analysis of the scattering field characteristics 

taking into account not only the scattering order but also the specific influence and validity of the 
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scattered substructures. The examples of utilization of this algorithm has been presented for 

trabecular bone model. Namely – the simplified analytical model corresponding to the models 

used in the description of crystals was presented and justified.  

In the description of the location of frequency peaks that are specific for the scattering 

the simplified – averaging – analytical model is consistent (highly correlated) with the results 

of the exact model of the random structure (except peaks 2.67 MHz).   

Random structures can have or preserve properties of regular structures or some of their 

average characteristics (e.g. distances between elements, number of elements) that can be 

determined by correlating them with models of regular structures.  

In the range of frequencies and sizes of the probes which were used in the investigation 

of bones a good agreement of the model predictions with the experimental results was 

obtained (for the given example the interpretation of the experiment on the basis of models 

shows that <dExp> = 1.07 mm).   
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