PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of the Hilbert-Huang Transform for characterization of gassy sediments in Eckernförde Bay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bottom top layer of the central part of the Eckernförde Bay (Germany) consists of soft muddy sediments containing free methane gas. Locations of gas bubbles trapped in the sediment and gas seeps visualised with hydroacoustic data have been reported. The main goal of our study was to examine whether it was possible, using a singlebeam echosounder with relatively high frequency of the transmitted signal (120 kHz), to detect echo properties that could be indicative of the occurrence of free gas in the bottom sediments. During three days of measurements organised by Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel (Germany), the acoustic data were collected from boards of r/v Polarfuchs and r/v Littorina. The Hilbert-Huang Transform was applied to detect ‘gassy’ anomalies in backscattered signals from the bottom. The transformer decomposes signal into finite and small number of Intrinsic Mode Function (IMF) components with time-dependent amplitudes and frequencies. Certain IMF components carry information on variability of geoacoustic parameters, which can be indicative of presence of gas bubbles in the acoustically penetrated sediment as well as in the water column. Based on the shape of the echo signal envelope and its fading with range we characterized the signal attenuation in areas where gas was present. The rapid increase in acoustical wave attenuation in areas of intensive gas ebullition demonstrates good applicability of the method proposed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
237--244
Opis fizyczny
Bibliogr. 17 poz, rys.
Twórcy
autor
autor
autor
  • University of Gdansk, Institute of Oceanography 46, Al. Marszalka Pilsudskiego, 81-378 Gdynia, Poland, j.tegowski@ug.edu.pl
Bibliografia
  • [1] Okyar M., Ediger V., Seismic evidence of shallow gas in the sediment on the shelf off Trabzon, southeastern Black Sea, Continental Shelf Research, 19, (1999), 575–587.
  • [2] Jackson D. R., Wiliams K. L., Wever T. F., Friedrichs C. T., Wright L. D., Sonar evidence for methane ebullition in Eckernförde Bay, Continental Shelf Research, 18, (1998), 1893–1915.
  • [3] Klusek, Z., Matwiejew, A. L., Potapow, A. I. and Sutin, A. M., Observation of nonlinear scattering of acoustical waves at sea sediments, Acoustics Letter 18, No 11, (1995), 198–203.
  • [4] Grelowska G., Kozaczka E., 2010, The examination of the structure of the upper layers of the seabed by the means of the parametric sonar, Proceedings of 20th International Congress on Acoustics, ICA 2010, 23–27 August 2010, Sydney, Australia.
  • [5] Tęgowski J., Klusek Z., Jakacki J., 2006, Non-Linear\Acoustical Methods in The Detection of Gassy Sediments in Acoustics Inversion Methods and Experiments for Assessment of the Shallow Water Environment, chapter in the book, Springer, 350.
  • [6] Ostrovsky I., Methane bubbles in Lake Kinneret: quantification and temporal and spatial heterogeneity. Limnol Oceanogr 48, (2003), 1030–1036.
  • [7] Wever Th. F., Abegg F., Fiedler H. M., Fechner G., Stender I. H., Shallow gas in the muddy sediments of Eckernförde Bay, Germany, Continental Shelf Research, 18, (1998), 1715–1739.
  • [8] Schroot B. M., Klaver G. T., Schuttenhelm R. T. E., Surface and subsurface expressions of gas seepage to the seabed – examples from the Southern North Sea, Marine and Petroleum Geology, 22, (2005), 499–515.
  • [9] Lyons, A. P., Duncan, M. E., Anderson, A. L., Hawkins, J. A., Predictions of the acoustic scattering response of free-methane bubbles in muddy sediments, J. Acoust. Soc. Am., 99 (1), (1996), 63–172.
  • [10] Jackson D. R., Wiliams K. L., Wever T. F., Friedrichs C. T., Wright L. D., Sonar evidence for methane ebullition in Eckernförde Bay, Continental Shelf Research, 18, (1998), 18931–915.
  • [11] Wang W., Li X., Zhang R., Speech Detection Based on Hilbert-Huang Transform, Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences, 2006, pp. 290–293.
  • [12] Adam O., The use of the Hilbert-Huang transform to analyze transient signals emitted by sperm whales, Applied Acoustics, 67, (2006), 1134–1143.
  • [13] Huang N. E., Wu Z. H., A review on Hilbert-Huang transform: method and its applications to geophysical studies, Reviews of Geophysics, 2008, Vol. 46, No 2.
  • [14] Huang W., Shen Z., Huang N. E., Fung Y. C., Engineering analysis of biological variables: an example of blood pressure over 1 day, Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No 9, (1998), 4816–4821.
  • [15] Huang N. E., Shen Z., Long S. R., et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society London A, Vol. 454, No 1971, (1998), 903–995.
  • [16] Klusek Z., Tęgowski J., Szczucka J., Śliwiński A., Characteristic properties of bottom backscattering in the southern Baltic Sea at ultrasound frequencies, Oceanologia, 36 (1), (1994), 81–102.
  • [17] Nunes, J. C., Guyot S., Delechelle E., Texture analysis based on local analysis of the bidimensional empirical mode decomposition, Mach. Vis. Appl., 16, (2005), 177–188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0038-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.